RESIDENT TRAINING PROGRAM

General Description ... 111
PGY1 Level .. 111
PGY2 Level .. 111
PGY3 Level .. 112
PGY4 Level .. 112
PGY5 Level .. 112
Armed Forces Institute of Pathology ... 112
Physics Instruction .. 112
Conferences .. 113
Seminars and Half-Day Program ... 113
Research ... 113
Rounds ... 113
View Box Teaching ... 114
Journal Club ... 114
Visiting Professor Program ... 114
Organ Imaging Review Course .. 114
Program Evaluation .. 114
Program Supervision .. 114
Resident Evaluations ... 115
Resident Awards .. 115
Summary .. 116

RESIDENTS

<table>
<thead>
<tr>
<th>Level</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGY1</td>
<td>117</td>
</tr>
<tr>
<td>PGY2</td>
<td>117</td>
</tr>
<tr>
<td>PGY3</td>
<td>117</td>
</tr>
<tr>
<td>PGY4</td>
<td>118</td>
</tr>
<tr>
<td>PGY5</td>
<td>119</td>
</tr>
</tbody>
</table>

NUCLEAR MEDICINE TRAINING PROGRAM

General Description .. 120
General Objectives ... 120
Dual Radiology and Nuclear Medicine Residency 120

RADIOLOGY SCIENTIST TRAINING PROGRAM

Objectives .. 121
Organization ... 121
Eligibility and Application Procedure .. 121
Remuneration ... 121
Selection of Research Project and Supervisor 121
Graduate Degrees ... 122
Clinical Responsibilities .. 122

OBJECTIVES OF TRAINING & SPECIALTY TRAINING REQUIREMENTS IN DIAGNOSTIC RADIOLOGY

Definition .. 123
General Objectives ... 123
Specific Objectives ... 123
Training in Canada ... 126

SPECIALTY TRAINING REQUIREMENTS IN DIAGNOSTIC RADIOLOGY

<table>
<thead>
<tr>
<th>Program</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESIDENT RESEARCH PROGRAM</td>
<td>129</td>
</tr>
<tr>
<td>Seminar Series</td>
<td>129</td>
</tr>
<tr>
<td>Support</td>
<td>129</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Presentation Day</td>
<td>130</td>
</tr>
<tr>
<td>FELLOWSHIP PROGRAM</td>
<td>131</td>
</tr>
<tr>
<td>UNDERGRADUATE PROGRAM</td>
<td>134</td>
</tr>
<tr>
<td>Year I Medicine</td>
<td>137</td>
</tr>
<tr>
<td>Year II Medicine</td>
<td>137</td>
</tr>
<tr>
<td>Year III Clerkship</td>
<td>139</td>
</tr>
<tr>
<td>Year IV</td>
<td>140</td>
</tr>
<tr>
<td>Other Teaching Activities and Involvement</td>
<td>141</td>
</tr>
<tr>
<td>CONTINUING EDUCATION PROGRAM</td>
<td>139</td>
</tr>
<tr>
<td>Organ Imaging Review</td>
<td>139</td>
</tr>
<tr>
<td>INVITED LECTURERS AND VISITING PROFESSORS</td>
<td>141</td>
</tr>
</tbody>
</table>
CHAIR’S REPORT

It is my pleasure to present the 2005-2006 Department of Medical Imaging Annual Report. The past year has been a very successful one for the Department, with continued growth in new faculty and expansion of our research and educational programs. In 2005-2006 nine new faculty members joined our department. Our new members include: Dr. Ronit Agid, Dr. Frederick Au, Dr. Carrie Betel, Dr. Martin Charron, Dr. Pavel Crystal, Dr. David Gianfelice, Dr. Gilbert Hurwitz, Dr. Linda Probyn, and Dr. Roger Smith. We now have over 160 full-time faculty members, as well as 63 fellows and 62 residents.

We continue to have strong educational programs. I am especially grateful to our Program Directors, all of whom have contributed a great deal of their time towards the success of our department: Drs. Timothy Dowdell and Nasir Jaffer (Undergraduate Program), Drs. Walter Montanera and Anthony Hanbidge (Residency Program), Dr. Manohar Shroff (Fellowship Program), and Mostafa Atri (Continuing Education). All of our programs are very strong, and continue to improve, and grow in size.

Our department maintained strong support of its faculty for protected research time. This year, the faculty members with departmentally sponsored research time were:

- Robert Beecroft (High pressure angioplasty balloon vs. non-high pressure balloon; Angioplasty in hemodialysis arteriovenous access stenosis)
- Bairbre Connolly (Evaluating radiation exposures experienced by children undergoing pediatric interventional radiology procedures)
- Andrea Doria (Decision-analytic model for evaluation of tomography diagnostic techniques for appendicitis in children)
- Richard Farb (The dural worm: A sign of previous sinus venous thrombosis - renewed from July 1, 2004-05)
- Korosh Khalili (Determination of tumor differentiation by CT/MR in hepatocellular carcinoma)
- Tae Kyoung Kim (Focal nodular hyperplasia and hepatic adenoma: Differentiation with contrast-enhanced real-time ultrasound with maximum intensity projection technique)
- Seon Kyu Lee (The evaluation of intracranial atherosclerosis using the BOLD MRI technique)
- Martin O'Malley (Growth rates of hepatocellular carcinoma stratified by size - renewed from July 1, 2004-05)
- Yves Provost (CT coronary angiography - renewed from July 1, 2004-05)
- Dheeraj Rajan (Interventional research/Research in minimally invasive therapy - renewed from July 1, 2004-05)
- Heidi Roberts (Early lung cancer detection using computed tomography - renewed from July 1, 2004-05)
- Manohar Shroff (Normal anatomy, pitfalls and abnormal dural venous sinuses in neonates)
- Hong Teng Tan (CT venography – Evaluate an algorithm to maximize native arteriovenous fistulae (AVF) for hemodialysis access)
- Lawrence White (Quantitative T2 mapping of cartilage transplantation in an animal model - renewed from July 1, 2004-05)
- Stephanie Wilson (Addition of quantitative analysis to contrast enhanced ultrasound of the liver)
We are very proud of the excellent teaching in all of our educational programs. Every year we publicly recognize those teachers selected by our trainees as being the most outstanding. Our departmental teaching awards this year were:

Edward L. Lansdown Award for Outstanding Teaching in the Residency Training Program
- Dr. Edna Becker

Outstanding teaching in the residency program
- Dr. Mostafa Atri
- Dr. Edna Becker
- Dr. Robert Bleakney
- Dr. Raymond Chan
- Dr. Dae-Gyun Chung
- Dr. TaeBong Chung
- Dr. Lisa Ehrlich
- Dr. Anthony Hanbidge
- Dr. Nasir Jaffer
- Dr. Andrew Lata
- Dr. Dorothy Lazinski
- Dr. Caitlin T. McGregor
- Dr. Walter Montanera
- Dr. Derek Muradali
- Dr. Oscar Navarro
- Dr. Martin O’Malley
- Dr. Linda Probyn
- Dr. Manohar Shroff
- Dr. Harry Shulman
- Dr. Stephanie Wilson
- Dr. Louis Wu

Outstanding teaching in the fellowship program
- Dr. Mostafa Atri
- Dr. Paul Babyn
- Dr. Edna Becker
- Dr. Robert Bleakney
- Dr. Karina Bukhanov
- Dr. Dae-Gyun Chung
- Dr. Alan Daneman
- Dr. Masoom Haider
- Dr. Anthony Hanbidge
- Dr. Kartik Jhaveri
- Dr. Edward Kassel
- Dr. Korosh Khalili
- Dr. David Manson
• Dr. David Mikulis
• Dr. Walter Montanera
• Dr. Lyne Noël de Tilly
• Dr. Martin O’Malley
• Dr. Kamaldine Oudjhane
• Dr. Sophia Pantazi
• Dr. Charles Raybaud
• Dr. Manohar Shroff
• Dr. Gordon Weisbrod

Achieved distinction for outstanding teaching in both the residency and fellowship programs
• Dr. Mostafa Atri
• Dr. Edna Becker
• Dr. Robert Bleakney
• Dr. Dae-Gyun Chung
• Dr. Anthony Hanbidge
• Dr. Walter Montanera
• Dr. Martin O’Malley
• Dr. Manohar Shroff

The academic promotions this year were (effective July 1, 2006):
 Professor - Dr. Lawrence White
 Associate Professor - Dr. Timothy Dowdell
 Dr. Masoom Haider
 Dr. Martin O’Malley
 Assistant Professor - Dr. Petrina Causer
 Dr. Dorothy Lazinski
 Dr. Yves Provost

I would like to thank Suzanne D’Alvise, Amy Shea, Ayethida Walker and Denese Coulbeck - the administrative staff at the university offices. I greatly appreciate the efforts of the team!

Walter Kucharczyk, M.D., F.R.C.P. (C)
Professor and Chair
DEPARTMENT OF MEDICAL IMAGING - UNIVERSITY OF TORONTO
(as of June 30, 2006)

Chair .. Kucharczyk, W.
Associate Chair.. Babyn, P.

Radiologists-in-Chief

Hospital for Sick Children ... Babyn, P.
Mount Sinai Hospital-University Health Network (Princess Margaret Hospital/ Toronto General Hospital/Toronto Western Hospital) .. Bret, P.
St. Michael's Hospital ... Common, A.
Sunnybrook & Women's College Health Sciences Centre .. Moody, A.

Program Directors

Continuing Education .. Atri, M.
Fellowship ... Shroff, M.
Neuroradiology .. Fox, A.
Nuclear Medicine ... Ehrlich, L.
PGY1 .. Hambidge, A.
Radiology Residency .. Montanera, W.
Radiology Residency (Co-Director) ... Hanbidge, A.
Undergraduate .. Dowdell, T.
Undergraduate (Co-Director) .. Jaffer, N.

Division Heads

Abdominal Imaging ... Atri, M.
Breast Imaging ... Muradali, D.
Cardiothoracic
 Cardiac Imaging ... Paul, N. (Acting)
 Thoracic Imaging ... Paul, N.
Musculoskeletal Imaging ... White, L.
Neuroradiology .. terBrugge, K.G.
Nuclear Medicine ... Hurwitz, G.
Pediatric Imaging ... Manson, D.
Vascular and Interventional Radiology ... Rajan, D.

Department Administrative Staff

Business Officer ... D’Alvise, S.
Administrative Assistant ... Shea, A.
Residency Program Assistant .. Walker, A.
Research Program Assistant .. Coulbeck, D.
COMMITTEES

Executive Committee
Kucharczyk, W. (Committee Chair)
Jaskolka, J. (Chief Resident)
Babyn, P.
Bret, P.
Laughlin, S.
Common, A.
Dowdell, T.
Hamilton, P.
Hershkop, M.
Jaffer, N.
Laughlin, S.
Montanera, W.
Moody, A.
Salem, S.
Shroff, M.

Promotions Committee
terBrugge, K. (Committee Chair)
Atri, M.
Babyn, P.
Jaffer, N.
Rubenstein, J.
Weiser, W.
Yaffe, M.

Undergraduate Teaching Committee
Dowdell, T. (Committee Chair)
Bleakney, R.
Chawla, T.
Chung, T.B.
Deitel, W.
Jaffer, N.
Margolis, M.
Paul, N.
Sarrazin, J.
Shroff, M.

Specialty Training Committee
Montanera, W. (Committee Chair)
Jaskolka, J. (Chief Resident)
David, E.
Hayeems, E.
Hershkop, M.
Laughlin, S.
MacDonald, C.
Mikulis, D.
Pearce, D
Prasad, V.
Martinovic, E.
Rosta, N.
Stimec, J.
Mokhtassi, A.
UNIVERSITY OF TORONTO FULLY AFFILIATED HOSPITALS AND INSTITUTES

Hospital for Sick Children .. 555 University Avenue
Toronto, Ontario
M5G 1X8

Mount Sinai Hospital ... 600 University Avenue
Toronto, Ontario
M5G 1X5

St. Michael's Hospital ... 30 Bond Street
Toronto, Ontario
M5B 1W8

Sunnybrook & Women's College Health Sciences Centre

Sunnybrook Campus ... 2075 Bayview Avenue
Toronto, Ontario
M4N 3M5

Women's College Campus ... 76 Grenville Street
Toronto, Ontario
M5S 1B2

University Health Network

Princess Margaret Hospital .. 610 University Avenue
Toronto, Ontario
M5G 2M9

Toronto General Hospital ... 585 University Avenue, NCSB
Toronto, Ontario
M5G 2N2

Toronto Western Hospital .. 399 Bathurst Street
Toronto, Ontario
M5T 2S8

Centre for Addiction and Mental Health 250 College Street
Toronto, Ontario
M5T 1B8

Positron Emission Tomography Centre 250 College Street
Toronto, Ontario
M5T 1B8
<table>
<thead>
<tr>
<th>NAME</th>
<th>RANK</th>
<th>DIVISION</th>
<th>HOSPITAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agid, R.</td>
<td>Assistant Professor</td>
<td>Neuroradiology</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Alton, D.J.</td>
<td>Assistant Professor</td>
<td>Pediatric Imaging</td>
<td>Hospital for Sick Children</td>
</tr>
<tr>
<td>Arenson, A.M.</td>
<td>Assistant Professor</td>
<td>Abdominal Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Armstrong, D.</td>
<td>Assistant Professor</td>
<td>Neuroradiology</td>
<td>Hospital for Sick Children</td>
</tr>
<tr>
<td>Ash, J.M.</td>
<td>Associate Professor</td>
<td>Pediatric Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Atri, M.</td>
<td>Associate Professor</td>
<td>Abdominal Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Au, F.</td>
<td>Lecturer</td>
<td>Breast Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Aviv, R.</td>
<td>Assistant Professor</td>
<td>Pediatric Imaging</td>
<td>Hospital for Sick Children</td>
</tr>
<tr>
<td>Babyn, P.S.</td>
<td>Associate Professor</td>
<td>Musculoskeletal Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Becker, E.J.</td>
<td>Associate Professor</td>
<td>Vascular Imaging</td>
<td>Mount Sinai Hospital</td>
</tr>
<tr>
<td>Beecroft, R.</td>
<td>Lecturer</td>
<td>Abdominal Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Betel, C.</td>
<td>Lecturer</td>
<td>Neuroradiology</td>
<td>Hospital for Sick Children</td>
</tr>
<tr>
<td>Blaser, S.</td>
<td>Associate Professor</td>
<td>Musculoskeletal Imaging</td>
<td>Mount Sinai Hospital</td>
</tr>
<tr>
<td>Bleakney, R.</td>
<td>Assistant Professor</td>
<td>Vascular Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Blend, R.</td>
<td>Associate Professor</td>
<td>Neuroradiology</td>
<td>Hospital for Sick Children</td>
</tr>
<tr>
<td>Bret, P.</td>
<td>Professor</td>
<td>Abdominal Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Bukhanov, K.</td>
<td>Assistant Professor</td>
<td>Breast Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Caldwell, C.B.</td>
<td>Assistant Professor</td>
<td>Research</td>
<td>Mount Sinai Hospital</td>
</tr>
<tr>
<td>Causer, P.</td>
<td>Assistant Professor</td>
<td>Abdominal Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Chait, P.G.</td>
<td>Associate Professor</td>
<td>Pedriatric Imaging</td>
<td>Hospital for Sick Children</td>
</tr>
<tr>
<td>Chan, R.</td>
<td>Assistant Professor</td>
<td>Musculoskeletal Imaging</td>
<td>St. Michael’s Hospital</td>
</tr>
<tr>
<td>Charron, M.</td>
<td>Professor</td>
<td>Vascular Imaging</td>
<td>Hospital for Sick Children</td>
</tr>
<tr>
<td>Chawla, T.</td>
<td>Assistant Professor</td>
<td>Abdominal Imaging</td>
<td>Mount Sinai Hospital</td>
</tr>
<tr>
<td>Cheng, M.H.L.</td>
<td>Assistant Professor</td>
<td>Pedriatric Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Cheyne, D.</td>
<td>Associate Professor</td>
<td>Abdominal Imaging</td>
<td>Hospital for Sick Children</td>
</tr>
<tr>
<td>Christakis, M.</td>
<td>Assistant Professor</td>
<td>Breast Imaging</td>
<td>Mount Sinai Hospital</td>
</tr>
<tr>
<td>Crystal, P.</td>
<td>Assistant Professor</td>
<td>Research</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Chuang, S.H.</td>
<td>Associate Professor</td>
<td>Neuroradiology</td>
<td>Mount Sinai Hospital</td>
</tr>
<tr>
<td>Chui, M.C.</td>
<td>Assistant Professor</td>
<td>Neuroradiology</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Chung, D-G.</td>
<td>Lecturer</td>
<td>Abdominal Imaging</td>
<td>Hospital for Sick Children</td>
</tr>
<tr>
<td>Chung, T.B.</td>
<td>Assistant Professor</td>
<td>Cardiothoracic Imaging</td>
<td>St. Michael’s Hospital</td>
</tr>
<tr>
<td>Common, A.A.</td>
<td>Assistant Professor</td>
<td>Vascular Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Connolly, B.</td>
<td>Assistant Professor</td>
<td>Pediatric Imaging</td>
<td>Mount Sinai Hospital</td>
</tr>
<tr>
<td>Cooke, G.M.</td>
<td>Assistant Professor</td>
<td>Musculoskeletal Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Cooper, P.W.</td>
<td>Assistant Professor</td>
<td>Nuclear Medicine</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Crawley, A.</td>
<td>Assistant Professor</td>
<td>Breast Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Curpen, B.</td>
<td>Assistant Professor</td>
<td>Research</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Damyanovich, A.</td>
<td>Assistant Professor</td>
<td>Pediatric Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Daneman, A.</td>
<td>Professor</td>
<td>Vascular Imaging</td>
<td>Hospital for Sick Children</td>
</tr>
<tr>
<td>David, E.</td>
<td>Lecturer</td>
<td>Abdominal Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Deitel, W.</td>
<td>Assistant Professor</td>
<td>Breast Imaging</td>
<td>St. Michael's Hospital</td>
</tr>
<tr>
<td>Dill-Macky, M.</td>
<td>Assistant Professor</td>
<td>Pediatric Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Doria, A.</td>
<td>Assistant Professor</td>
<td>Musculoskeletal Imaging</td>
<td>Hospital for Sick Children</td>
</tr>
<tr>
<td>Dowdell, T.R.</td>
<td>Associate Professor</td>
<td>Nuclear Medicine</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Ehrlich, L.E.</td>
<td>Associate Professor</td>
<td>Breast Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Farb, R.</td>
<td>Assistant Professor</td>
<td>Abdominal Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Fishell, E.</td>
<td>Associate Professor</td>
<td>Abdominal Imaging</td>
<td>Mount Sinai Hospital</td>
</tr>
<tr>
<td>Fong, K.</td>
<td>Associate Professor</td>
<td>Pediatric Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Fox, A.</td>
<td>Professor</td>
<td>Nuclear Medicine</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Ganguli, N.</td>
<td>Associate Professor</td>
<td>Breast Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Gianfelice, D.</td>
<td>Associate Professor</td>
<td>Breast Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Gilday, D.L.</td>
<td>Professor</td>
<td>Breast Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Glanc, P.</td>
<td>Assistant Professor</td>
<td>Abdominal Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Goldberg, F.</td>
<td>Assistant Professor</td>
<td>Breast Imaging</td>
<td>St. Michael’s Hospital</td>
</tr>
<tr>
<td>Name</td>
<td>Position</td>
<td>Department</td>
<td>Institution</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Gray, B.</td>
<td>Assistant Professor</td>
<td>Neuroradiology</td>
<td>St. Michael’s Hospital</td>
</tr>
<tr>
<td>Greyson, N.D.</td>
<td>Associate Professor</td>
<td>Nuclear Medicine</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Haider, M.</td>
<td>Associate Professor</td>
<td>Abdominal Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Hamilton, P.A.</td>
<td>Assistant Professor</td>
<td>Abdominal Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Hanbridge, A.</td>
<td>Assistant Professor</td>
<td>Vascular Imaging</td>
<td>Mount Sinai Hospital</td>
</tr>
<tr>
<td>Hayeems, E.</td>
<td>Assistant Professor</td>
<td>Nuclear Medicine</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Hendler, A.L.</td>
<td>Assistant Professor</td>
<td>Cardiothoracic Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Herman, S.J.</td>
<td>Professor</td>
<td>Vascular Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Ho, C.S.</td>
<td>Associate Professor</td>
<td>Nuclear Medicine</td>
<td>Centre for Addiction and Mental Health</td>
</tr>
<tr>
<td>Houle, S.</td>
<td>Associate Professor</td>
<td>Abdominal Imaging</td>
<td>St. Michael’s Hospital</td>
</tr>
<tr>
<td>Hurwitz, G.</td>
<td>Associate Professor</td>
<td>Abdominal Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Ibach, K.</td>
<td>Assistant Professor</td>
<td>Vascular Imaging</td>
<td>Mount Sinai Hospital</td>
</tr>
<tr>
<td>Jaffer, N.M.</td>
<td>Assistant Professor</td>
<td>Abdominal Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Jang, H.J.</td>
<td>Assistant Professor</td>
<td>Abdominal Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Jhaveri, K.</td>
<td>Assistant Professor</td>
<td>Pediatric Imaging</td>
<td>Hospital for Sick Children</td>
</tr>
<tr>
<td>John, P.</td>
<td>Assistant Professor</td>
<td>Breast Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Jong, R.A.</td>
<td>Associate Professor</td>
<td>Breast Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Kachura, J.</td>
<td>Assistant Professor</td>
<td>Breast Imaging</td>
<td>Mount Sinai Hospital</td>
</tr>
<tr>
<td>Kassel, E.E.</td>
<td>Associate Professor</td>
<td>Vascular Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Kassner, A.</td>
<td>Assistant Professor</td>
<td>Pediatric Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Keller, M.A.</td>
<td>Assistant Professor</td>
<td>Abdominal Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Khallili, K.</td>
<td>Assistant Professor</td>
<td>Abdominal Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Kim, T.K.</td>
<td>Assistant Professor</td>
<td>Abdominal Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Koff, D.</td>
<td>Assistant Professor</td>
<td>Breast Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Kucharczyk, W.</td>
<td>Professor and Chair</td>
<td>Vascular Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Kulkarni, S.</td>
<td>Assistant Professor</td>
<td>Vascular Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Lata, A.C.</td>
<td>Assistant Professor</td>
<td>Breast Imaging</td>
<td>St. Michael's Hospital</td>
</tr>
<tr>
<td>Laughlin, S.</td>
<td>Assistant Professor</td>
<td>Heart Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Lax, M.</td>
<td>Assistant Professor</td>
<td>Abdominal Imaging</td>
<td>Mount Sinai Hospital</td>
</tr>
<tr>
<td>lazinski, D.</td>
<td>Assistant Professor</td>
<td>Abdominal Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Lee, S.K.</td>
<td>Assistant Professor</td>
<td>Abdominal Imaging</td>
<td>Hospital for Sick Children</td>
</tr>
<tr>
<td>MacDonald, C.E.</td>
<td>Assistant Professor</td>
<td>Abdominal Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Macgowan, C.</td>
<td>Assistant Professor</td>
<td>Abdominal Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Manson, D.E.</td>
<td>Assistant Professor</td>
<td>Abdominal Imaging</td>
<td>Hospital for Sick Children</td>
</tr>
<tr>
<td>Marcuzzi, D.W.</td>
<td>Assistant Professor</td>
<td>Abdominal Imaging</td>
<td>St. Michael’s Hospital</td>
</tr>
<tr>
<td>Margolis, M.</td>
<td>Assistant Professor</td>
<td>Abdominal Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Marotta, T.</td>
<td>Assistant Professor</td>
<td>Cardiothoracic Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Merchant, N.</td>
<td>Assistant Professor</td>
<td>Cardiac Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>McGregor, C.</td>
<td>Associate Professor</td>
<td>Abdominal Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Mikulis, D.</td>
<td>Assistant Professor</td>
<td>Abdominal Imaging</td>
<td>Hospital for Sick Children</td>
</tr>
<tr>
<td>Miller, S.</td>
<td>Associate Professor</td>
<td>Breast Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Montanera, W.</td>
<td>Associate Professor</td>
<td>Breast Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Moody, A.</td>
<td>Associate Professor</td>
<td>Nuclear Medicine</td>
<td>St. Michael’s Hospital</td>
</tr>
<tr>
<td>Muradali, D.</td>
<td>Assistant Professor</td>
<td>Breast Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Murray, S.Y.</td>
<td>Assistant Professor</td>
<td>Pediatric Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Navarro, O.</td>
<td>Assistant Professor</td>
<td>Breast Imaging</td>
<td>Hospital for Sick Children</td>
</tr>
<tr>
<td>Noël de Tilly, L.</td>
<td>Assistant Professor</td>
<td>Neonatology</td>
<td>Mount Sinai Hospital</td>
</tr>
<tr>
<td>Nugent, O.</td>
<td>Assistant Professor</td>
<td>Breast Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>O’Malley, M.</td>
<td>Assistant Professor</td>
<td>Neonatology</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Oudjhane, K.</td>
<td>Assistant Professor</td>
<td>Breast Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Pantazi, S.</td>
<td>Assistant Professor</td>
<td>Breast Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Paul, N.</td>
<td>Assistant Professor</td>
<td>Breast Imaging</td>
<td>Hospital for Sick Children</td>
</tr>
<tr>
<td>Pearce, D.</td>
<td>Lecturer</td>
<td>Breast Imaging</td>
<td>Mount Sinai Hospital</td>
</tr>
<tr>
<td>Probyn, L.</td>
<td>Assistant Professor</td>
<td>Breast Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Provost, Y.</td>
<td>Assistant Professor</td>
<td>Breast Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Pugash, R.A.</td>
<td>Assistant Professor</td>
<td>Breast Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Rajan, D.</td>
<td>Assistant Professor</td>
<td>Breast Imaging</td>
<td>Hospital for Sick Children</td>
</tr>
<tr>
<td>Ranson, M.</td>
<td>Assistant Professor</td>
<td>Breast Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Raybaud, C.</td>
<td>Professor</td>
<td>Breast Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Roberts, H.</td>
<td>Associate Professor</td>
<td>Breast Imaging</td>
<td>University Health Network</td>
</tr>
<tr>
<td>Rowlands, J.A.</td>
<td>Professor</td>
<td>Breast Imaging</td>
<td>Sunnybrook & Women’s College Health Sciences Centre</td>
</tr>
<tr>
<td>Rubenstein, J.D.</td>
<td>Associate Professor</td>
<td>Breast Imaging</td>
<td>University Health Network</td>
</tr>
</tbody>
</table>
Salem, S. Associate Professor Abdominal Imaging Mount Sinai Hospital
Salonen, D.C. Assistant Professor Musculoskeletal Imaging University Health Network
Sarrazin, J. Assistant Professor Cardiothoracic Imaging Sunnybrook & Women’s College Health Sciences Centre
Shroff, M. Assistant Professor Neuroradiology University Health Network
Shulman, H.S. Professor Cardiothoracic Imaging Sunnybrook & Women’s College Health Sciences Centre
Simons, M. Assistant Professor Vascular Imaging University Health Network
Smith, R. Assistant Professor Research University Health Network
Sniderman, K.W. Associate Professor Vascular Imaging University Health Network
Sussman, M. Assistant Professor Neuroradiology University Health Network
Symons, S. Assistant Professor Cardiothoracic Imaging Sunnybrook & Women’s College Health Sciences Centre
Tan, K.T. Assistant Professor Vascular Imaging University Health Network
Temple, M. Assistant Professor Research University Health Network
terBrugge, K.G. Professor Vascular Imaging University Health Network
Thomas, K. Assistant Professor Pediatric Imaging Hospital for Sick Children
Thurston, W. Assistant Professor Abdominal Imaging University Health Network
Toi, A. Associate Professor Pediatric Imaging University Health Network
Traubici, J. Assistant Professor Pediatric Imaging University Health Network
Turner, D. Assistant Professor Breast Imaging Sunnybrook & Women’s College Health Sciences Centre
Wall, J. Lecturer Abdominal Imaging Sunnybrook & Women’s College Health Sciences Centre
Weisbrod, G.L. Professor Musculoskeletal Imaging University Health Network
Weiser, W.J. Assistant Professor Cardiothoracic Imaging Sunnybrook & Women’s College Health Sciences Centre
White, L. Professor Cardiothoracic Imaging University Health Network
Willinsky, R.A. Assistant Professor Musculoskeletal Imaging University Health Network
Wilson, S.R. Professor Abdominal Imaging University Health Network
Wood, M.L. Professor Research/Medical Biophysics Sunnybrook & Women’s College Health Sciences Centre
Wright, B.E. Assistant Professor Breast Imaging Sunnybrook & Women’s College Health Sciences Centre
Wu, L. Assistant Professor Abdominal Imaging University Health Network
Xiang, J. Assistant Professor Research University Health Network
YaFe, M.J. Professor Research/Medical Biophysics Sunnybrook & Women’s College Health Sciences Centre
Yu, S-J. Professor Pediatric Imaging Sunnybrook & Women’s College Health Sciences Centre
Yu, E. Lecturer Neuroradiology University Health Network
Zalev, A.H. Assistant Professor Abdominal Imaging University Health Network
Zelovitzky, J.L. Assistant Professor Cardiothoracic Imaging University Health Network

12
Cross Appointments

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bronskill, M.J.</td>
<td>Professor</td>
<td>Medical Biophysics</td>
</tr>
<tr>
<td>Foster, S.</td>
<td>Professor</td>
<td>Medical Biophysics</td>
</tr>
<tr>
<td>Freedom, R.</td>
<td>Professor</td>
<td>Pediatrics</td>
</tr>
<tr>
<td>Henkelman, R.M.</td>
<td>Professor</td>
<td>Medical Biophysics</td>
</tr>
<tr>
<td>Johnson, J.A.</td>
<td>Associate Professor</td>
<td>Obstetrics and Gynaecology</td>
</tr>
<tr>
<td>McLaughlin, P.R.</td>
<td>Professor</td>
<td>Medicine</td>
</tr>
<tr>
<td>Noseworthy, M.</td>
<td>Assistant Professor</td>
<td>Medical Biophysics</td>
</tr>
<tr>
<td>Noyek, A.M.</td>
<td>Professor</td>
<td>Otolaryngology</td>
</tr>
<tr>
<td>Pharoh, M.J.</td>
<td>Professor</td>
<td>Dentistry</td>
</tr>
<tr>
<td>Plewes, D.B.</td>
<td>Professor</td>
<td>Medical Biophysics</td>
</tr>
<tr>
<td>Reilly, R.</td>
<td>Associate Professor</td>
<td>Pharmacy</td>
</tr>
<tr>
<td>Tomlinson, G.</td>
<td>Assistant Professor</td>
<td>Biostatistics</td>
</tr>
<tr>
<td>Trachtenberg, J.</td>
<td>Professor</td>
<td>Surgery</td>
</tr>
<tr>
<td>Vanek, I.</td>
<td>Assistant Professor</td>
<td>Ophthalmology</td>
</tr>
</tbody>
</table>

Radiation Sciences Program (Joint Program with Michener Institute)

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Babiak, C.</td>
<td>Instructor</td>
</tr>
<tr>
<td>Cornacchione, P.</td>
<td>Instructor</td>
</tr>
<tr>
<td>Crowley, S.</td>
<td>Instructor</td>
</tr>
<tr>
<td>Goodin, L.</td>
<td>Instructor</td>
</tr>
<tr>
<td>Havil, D.</td>
<td>Instructor</td>
</tr>
<tr>
<td>King, D-M.</td>
<td>Instructor</td>
</tr>
<tr>
<td>Maymard, L.</td>
<td>Instructor</td>
</tr>
<tr>
<td>Murray, L.</td>
<td>Instructor</td>
</tr>
<tr>
<td>Rodrigues, G.</td>
<td>Instructor</td>
</tr>
<tr>
<td>Sharpe, W.</td>
<td>Instructor</td>
</tr>
<tr>
<td>Sinn, H.</td>
<td>Instructor</td>
</tr>
<tr>
<td>Souter, C.</td>
<td>Instructor</td>
</tr>
<tr>
<td>Topple, A.</td>
<td>Instructor</td>
</tr>
<tr>
<td>Watson, T.</td>
<td>Instructor</td>
</tr>
<tr>
<td>Wong, B.</td>
<td>Instructor</td>
</tr>
</tbody>
</table>
THE DEPARTMENT OF MEDICAL IMAGING AND THE UNIVERSITY OF TORONTO TEACHING HOSPITALS

The academic programs in the Department of Medical Imaging are integrated with its five major teaching hospitals: the University Health Network (UHN), Mount Sinai Hospital (MSH), St. Michael’s Hospital, Sunnybrook & Women’s College Health Sciences Centre, and the Hospital for Sick Children. The medical imaging departments at UHN and MSH are consolidated into a single operational unit under the leadership of Dr. Patrice Bret. The Medical Imaging departments at St. Michael’s Hospital, Sunnybrook & Women’s College Health Sciences Centre, and the Hospital for Sick Children are led by Dr. Andrew Common, Dr. Alan Moody, and Dr. Paul Babyn.

University Health Network/Mount Sinai Hospital

Recruitment remains a priority for the Department, both for technologists and for radiologists. Our largely international fellowship program continues to contribute a number of outstanding radiologists from outside Canada to our Faculty, which in turn increases the pool of Canadian radiologists. As part of the MOH initiatives around waiting lists, some funding has been made available to Medical Imaging to reduce the waiting lists in MRI. This has allowed to complete the 24/7 coverage on most of the units and resulted in a significant decrease of the waiting list. At the same time, reorganization of the CT modality has allowed to also reduce the waiting list to a point where it now meets the benchmark standards for almost every indication. A large number of our faculty members continue to have time protected for academic work. Their work is more fully described in the Research Director’s report. Significant events and accomplishments include very major renovations at Toronto Western Hospital, which created a virtually brand new facility. This opened with redesigned space and new imaging equipment including a 3T MRI, new neuroangio equipment, and a gamma knife, providing a unique environment for the treatment of neurological disorders. PMH has a PET/CT scanner but access remains unavailable to most patients because funding is only available within a few supported clinical trials. This continues to be a handicap for Princess Margaret Hospital and to our Department – our recruitment efforts of a PET expert are severely hampered by lack of funding for PET studies.

Sunnybrook and Women’s College Health Sciences Centre

Sunnybrook Health Sciences Centre Medical Imaging Department is comprised of 6 divisions - Body Imaging, Neuroradiology, Cardiothoracic/VIR, Nuclear Medicine, Musculoskeletal and Breast Imaging, supporting major regional programmes including Oncology, Trauma, Burns and Stroke. The Department is research driven, encouraging hypothesis generated clinical research and collaboration with the adjacent department of Research Imaging. Access to state-of-the-art research equipment including 3T MRI, 1.5T MRI and PET-CT complement clinical twin speed MRI’s (2), 3 CT scanners and fully equipped nuclear medicine, angiography and ultrasound departments. The Department is fully integrated with PACS and RIS systems. For further information regarding clinical or research imaging please contact alan.moody@sunnybrook.ca.
St. Michael's Hospital

The Medical Imaging Department at St. Michael's Hospital boasts a Siemens PACs system with integrated voice recognition technology, and electronic work-listing will soon render the department paperless, with markedly improved reporting efficiency. The annual tally of imaging examinations is over 250,000, excluding a very busy cardiac catheterization service which performs over 4000 radiologist-interpreted procedures per year. The department is equipped with three helical CT scanners (including two new 64-slice units), three new 1.5 Tesla MRI units, and three angio suites, including a bi-plane neuro interventional facility. An aggressive recruiting campaign of sub-specialist radiologists has brought full-time staffing levels to 18 which has allowed the department to better meet the needs of the University Residency and Fellowship Programs. St. Michael’s is proud of its long-standing commitment to teaching and clinical excellence. The hospital has appointed a renowned Critical Care researcher as VP of Research, and there is renewed commitment to increasing the research profile of the hospital. A new state-of-the-art research and educational building complex will soon be built, to accommodate a focus on translational research. Other unique hospital attributes which are reflected in the Medical Imaging Department at St. Michael’s are the Inner City Health Programme, and the Hereditary Hemorrhagic Telangiectasia Program. St. Michael’s has recently been designated as a Centre of Excellence for Vascular Surgery, with a cooperative endovascular stent-graft program shared between Medical Imaging and Vascular Surgery. Our Neurointerventional Service has grown rapidly in the last few years, and will continue to do so as we expand our activities as a Regional Stroke Center. The Breast Imaging service has recently moved into a new CIBC Breast Centre on the same floor as the Medical Imaging Department. Further, St. Michael’s is downtown Toronto’s helipad-serviced trauma centre, and has outstanding clinical and research programs in renal disease, and in heart and vascular diseases, which are actively supported by the Medical Imaging Department.

Hospital for Sick Children

The Hospital for Sick Children Department of Diagnostic Imaging provides full imaging service for all children up to the age of 18 years. We currently perform approximately 137,000 examinations per year. The department has 25 full-time and part-time staff, in all pediatric imaging subspecialties. Currently the department has three 1.5T MR scanners (one research), two CT scanners - including one 8 slice CT. Renovations are underway to replace this equipment with a 64 slice CT, PET/CT (16 slice), 1.5T and a 3T MRI.

We also have a dedicated Image Guided Therapy suite which allows both Interventional Radiology and minimally invasive surgical procedures to be combined. There are four rooms containing integrated CT fluoroscopy, a biplane unit, and two single plane fluoroscopic units with three ultrasound units. The department has an active Ultrasound service with ten ultrasound units. There is an integrated PACS and RIS system providing image and report distribution throughout the department and the hospital. Research and sub-specialty training are active interests of the department with three imaging scientists and seventeen fellows in subspecialty training from across the world.
RESEARCH GRANTS

Members of the Department of Medical Imaging (underlined) were investigators on the following grants, identified by the principal investigator, other investigators, project title, sponsor, total amount of grant, and start and end dates of the funding period.

Atri M (Principal Investigator). Assessment of vascular flow in cancer with ultrasound imaging. Translational research award, Department of Imaging, University of Toronto. $35,000. 2005 - 2007

Esdaile J (Principal Investigator), White LM et al. (Co-Investigator). Tooling up for OA: Measuring what matters. Canadian Institutes of Health Research (CIHR), and the Institute of Musculoskeletal Health and Arthritis (IMHA). $1,500,000. 2003-2006.

Haider MA (Principal Investigator), Toi A et al (Co-Investigator). The utility of functional and morphologic MRI in the detection of prostate cancer for patients with elevated PSA and prior negative biopsy. PMH Foundation. $30,000. April 2002 (on-going).

Koff D. Canada Health Infoway - Fraser Health Authority - October 2005 - $336,408 - #724180135 - Evaluation of Irreversible Compression Ratios (“Lossy Compression”) & Development of Canadian Association of Radiologists Guidelines. Peer reviewed by the Canadian Association of Radiologists.

MacRae AR (Principal Investigator), Toi A et al (Co-Investigator). The SAFER study: Second and first trimester evaluation of risk of fetal trisomies. CIRH(Canadian Institutes of Health Research). $176,306 annually and $114,000 annually. September 2002 competition for 3 years and January 2003 for equipment for 3 years.

Marotta TR. Biological response to eCLIPS (endovascular clip systems) leaf. 2004-2006.

Nam RK (Principal Investigator), Toi A et al (Co-Investigator). Prospective evaluation of prostate biopsies for prostate cancer detection. National Cancer Institute of Canada. $410,070. 2004-2007,

Shroff M, Banwell B. Impact of multiple sclerosis on myelin and neuronal integrity in children. $84,000. CIHR. 2006 – 2007.

White LM (Principal Investigator), Hurtig MB et al (Co-Investigator). Risk factors and indicators that predict the progression of osteoarthrits after knee injury. Canadian Institutes of Health Research (CIHR), and the Institute of Musculoskeletal Health and Arthritis (IMAH). CIHR New Emerging Team NET Grant; Quality of Life Enhancement Competition 2004. $1,500,000. 2004 – 2009.

PUBLICATIONS: PEER–REVIEWED PAPERS AND ABSTRACTS

Fanning NF, Walters TD, Fox AJ, Symons SP. Association between calcification of the cervical carotid artery bifurcation and white matter ischemia. AJNR February 2006; 27:378-83.

Herdman T, Pang E, Gaetz W, Ressl V, Cheyne D. Spatiotemporal dynamics of neuromagnetic responses related to language production. Cerebral Cortex in press.

Itier RJ, Herdman AT, George N, Cheyne D, Taylor MJ. Inversion and contrast-reversal effects on face processing assessed by MEG. Brain Research 2006; 1115:108-120.

Muradali D, Kulkarni S. Sonography of the breast: To core or not to core. Can Assoc Radiol J. 2005 Dec; 56(5) 276-88.

O'Malley ME (PA), Takayama Y, Sherman M. Outcome of small (10-20mm) arterial phase-enhancing nodules seen on triphasic liver CT in patients with cirrhosis or chronic liver disease. American Journal of Gastroenterology, 2005 July; 100:1523-8.

INVITED PRESENTATIONS AND VISITING PROFESSORSHIPS

Amaral J. 36th Jornada Paulista De Radiologia, Sao Paulo, Brazil. April 2006. Percutaneous gastrointestinal access.

Amaral J. 36th Jornada Paulista De Radiologia, Sao Paulo, Brazil. April 2006. Intervention in pediatrics – What the general pediatric radiologist can offer – I.

Amaral J. 36th Jornada Paulista De Radiologia, Sao Paulo, Brazil. April 2006. Intervention in pediatrics – What the general pediatric radiologist can offer – II.

Amaral J. Hospital de Clinicas – Federal University of Parana, Curitiba, Brazil. April 2006. Pediatric Interventional Radiology.

Amaral J. How pediatric IR differs from adult IR – Not just a size difference. The Association of Vascular and Interventional Radiographers, Toronto, Canada, March 2006.

Amaral J. Oncology lecture; Lines and vascular access. The Hospital for Sick Children, December 2005.

Atri M. Premenopausal and postmenopausal endometrium. RSNA refresher course. Chicago, IL, November 2005.

Aviv R. A to E of Spine MRI. Toronto Rehabilitation Institute, April 24, 2006.

Bartlett ES, Fox AJ, Symons SP. Quantification of carotid stenosis with updated vascular imaging techniques. ENRS, Ottawa, Canada, August 2005.

Blaser S. Schneider Children's Hospital, Tel Aviv, Israel. Cerebellar development: In utero and postnatal. Neuroimaging of the inborn errors of Metabolism. Interesting case review. January 8, 2006.

Bleakney RR. MSK radiology update: Getting high-yield results for diagnosis and treatment. General Practice Weekend MSK Program. University of Toronto, Department of Family and Community Medicine, Toronto, April 2006.

Causer PA. MRI: What is it and who needs it? When, how and where to image the BRCA breast. BRCA: Today and Tomorrow. HBOC Foundation symposium, Montréal, Canada, October 2005.

Causer PA. Problems and pitfalls in breast MRI (including MR-guided biopsy). University of Toronto Breast Cancer Symposium, Toronto, Canada, June 2005.

Dockstader CL, Gaetz W, Cheyne D, Tannock R. Beta rebound in the human somatosensory cortex can be influenced by higher cognitive processes. 15th International Conference on Biomagnetism, Vancouver, Canada, 2006.

Fong KW. First trimester sonography for chromosomal and structural abnormalities. 68th annual meeting of the Canadian Association of Radiologists, Lake Louise, Canada. September 29-October 2, 2005.

Fox AJ. Quantification of carotid stenosis with updated vascular imaging techniques. Eastern Neuroradiology Society, annual meeting, Ottawa, Canada.

Fox AJ. a) Carotid stenosis measures: Pitfalls and progress; b) CT imaging of acute stroke. Soroka Medical Center, Beersheba, Israel, November 9, 2005.

Fox AJ. CT imaging of acute stroke in Adults. 7th Interventional Neuroradiology Symposium. University of Toronto. September 2005.

Gaetz W, Sutcliffe TL, Logan W, Shroff M, Fehlings DL, Cheyne D. MEG and fMRI localized changes in cortical organization following constraint-induced therapy: A case study involving

Gagnon A, Glanc P. Wednesday September 28, 2005: Stump the Professor – Obstetrics. 15th World Congress on Ultrasound in Obstetrics and Gynecology, September 25-29, 2005, Vancouver, Canada:

Glanc P. Thursday September 29, 2005, Live Scan demonstration: Abdominal Organs. 15th World Congress on Ultrasound in Obstetrics and Gynecology, September 25-29, 2005, Vancouver, Canada:

Glanc P. Adnexal masses in pregnancy, Women's imaging: Advances in Gynaecological Imaging and First Trimester Ultrasound, February 10-12, 2006, University of Toronto.

Glanc P. The role of US in non-obstetrical complications: Maternal Fetal Medicine Program.

Glanc P. Use of ultrasound in managing non-obstetric complications of pregnancy. 15th World Congress on Ultrasound in Obstetrics and Gynecology, September 25-29, 2005, Vancouver, Canada.

Haider M. RSNA Refresher Course, Chicago, USA, November 2005. a) MRI of the pancreas, b) Optimize your body MR imaging protocols with the experts: pelvis.

Jong RA. Applied Health Informatics Bootcamp - University of Waterloo, Waterloo, Ontario - July 17-22, 2005:

Jong RA. What you should know about digital mammography: 2nd annual Practical Course in Digital Imaging and Teleradiology Connectivity in the 21st Century. Toronto, Canada, April 7, 2006.

Kassel EE. Imaging of thyroid nodules. The 7th Current Concepts on the Management of Thyroid Nodular Disease and Cancer (Incorporating Parathyroid Disease). Departments of Otolaryngology - Head and Neck Surgery, Medicine, Surgery, Laboratory Medicine and Pathobiology, Oncology Continuing Education. Mount Sinai Hospital, Toronto, Canada. May 26, 2006.

Koff DA, Townsend C. Continuing Medical Education Director. Major Healthcare Applications 2: Digital Imaging and PACS.

Koff DA. Applied Health Informatics Bootcamp - University of Waterloo, Waterloo, Canada. April 5-8, 2006 - Continuing Medical Education Director.

Kulkarni S. Full field digital mammography. Tata Memorial Hospital, Mumbai, India, August 2005.

Kulkarni S. Breast intervention: needle localization. 31st annual scientific meeting, Society of Interventional Radiology, Toronto, Canada, April 2006.

Lim R. Nuclear Medicine Board Review Seminars for Radiology Residents (2 hours), Massachusetts General Hospital, - April 14, 2006.
Lim R. Nuclear Medicine Board Review Seminars for Radiology Residents (2 hours), University of Toronto, May 25 and May 31, 2006.

Lim R. University of Toronto Nuclear Medicine Residency Lecture – Nuclear Imaging, various topics - April 2006.

MacDonald C. Medical Imaging, McMaster University, Approach to pediatric congenital heart disease. April 26, 2006.

Marotta TR. Interventional management of spontaneous and catheter induced stroke. Interventional Cardiology Meeting. January 2006, Whistler, BC.

McVeigh P, Bostan A, Cheyne D. Comparison of dipole fit and beamformer localization with different head models: Simulations using a realistically shaped physical model. 15th International Conference on Biomagnetism, Vancouver, Canada, 2006.

Muradali D. National Annual Congress of Indian Federation Ultrasound in Medicine and Biology; (i) Scrotal Ultrasound; (ii) Transplant ultrasound; (iii) Artifacts in ultrasound; (iv) Liver tumor symposium. Pune, India, February 2005.

O'Malley M. MDCT GU tract. Canadian Association of Radiologists. 68th Annual Scientific Meeting. Lake Louise, Canada, September 2005.

O'Malley M. Renal lesion characterization. Urology Rounds, University Health Network, Princess Margaret Hospital, Toronto, Canada. June 12, 2006.

Paul N. Advances in imaging: low dose spiral CT-are we ready for it? University of Toronto Annual Day in Respiloogy November 12, 2005.

1) Provost Y. Cardiac CT and coronary artery CT angiography. CAR Annual Meeting, Lake Louise, Canada, 30 September 2005.

52

Shroff M. Imaging in epilepsy; and Advanced neuroimaging of brain tumors. Presented as CME lectures at the 6th Asian Conference of Neurological Surgeons, Mumbai, India, January 26-29, 2006.

Shroff M. CNS infections in children. Invited CME lecture at the 68th Canadian Association of Radiology annual scientific meeting, Lake Louise, Canada. October 2, 2005.
Shroff M. Neuroimaging of metabolic diseases; and Imaging of the temporal bone. Invited lectures presented as Visiting Professor to Alberta Children's Hospital, Calgary, Canada. September 29, 2005.

Toi A. Routine obstetrical ultrasound. Obstetrical residents teaching seminar. Women's College Hospital, Toronto, Canada. April 4, 2006.

White LM. (a) MR imaging assessment of the knee ligaments. (b) MR imaging in the vicinity of orthopedic metal hardware. (c) MR imaging of the knee post meniscal and articular cartilage repair. Visiting Professor, Radiology Grand Rounds, Department of Radiology, University of Ottawa, Ottawa, Canada. February 15-17, 2006.

Wu, L. Visiting Professor (4 lectures): Memorial University, Newfoundland and Labrador, September 2005.

Yoo S-J. Normal cardiac anatomy on MRI. Symposium on Congenital Heart Disease, Development, Pathology, Imaging and Surgery, Albuquerque, NM. September 8-13, 2005.
Yoo S-J. Normal cardiac anatomy for imaging. 4th SPR Symposium on Pediatric Cardiovascular MR, Houston, TX. March 31-April 2, 2006.

Yoo S-J. Pediatric cardiovascular MRI overview. Symposium on Congenital Heart Disease, Development, Pathology, Imaging and Surgery, Albuquerque, NM. September 8-13, 2005.

Yoo S-J. Practicum. 4th SPR Symposium on Pediatric Cardiovascular MR, Houston, TX. March 31-April 2, 2006.

Yoo S-J. Small group sessions: Aortic arch anomalies, MRI anatomy. Symposium on Congenital Heart Disease, Development, Pathology, Imaging and Surgery, Albuquerque, NM. September 8-13, 2005.

Bayle D, Taylor MJ. The role of learned or acquired familiarity on early face recognition processes. Part of a symposium at the International Cognitive Neuroscience meeting, Havana, Cuba. September 2005.

North America, Chicago, IL. November 27-December 2, 2005. (Radiology resident trainee award winner)

Charron M, Green M, Leung K, Louca E, Coates AL. Using 99mTc-DTPA to measure lung deposition from delivery systems with very different delivery times. Northeast Regional Meeting of the Society of Nuclear Medicine, Groton, CT. October 27-29, 2006.

Cheng H-L, Wright GA. Rapid high-resolution T1 mapping by variable flip angles: Accurate and precise measurements in the presence of RF field inhomogeneity. 14th Scientific Meeting of the International Society of Magnetic Resonance in Medicine, Seattle, WA. May 2006.

Crean A, Provost YL, Paul NS, Merchant N. The clinical, echocardiographic, and magnetic resonance imaging features of Ebstein's anomaly. 91st Scientific Assembly and annual meeting of the Radiological Society of North America, Chicago, IL. November 27-December 2, 2005.

Fong KW, Toi A, Salem S, Pantazi S. Obstetric imaging case of the day cases. 91st Scientific Assembly and annual meeting of the Radiological Society of North America, Chicago, IL. November 27-December 2, 2005.

Gianfelice D. Coaxial CT fluoroscopic core biopsy of abdominal lesions: A method to reduce procedure time, increase tissue harvest, and reduce morbidity. 91st Scientific Assembly and annual meeting of the Radiological Society of North America, Chicago, IL. November 27-December 2, 2005.

Gianfelice D. Thoracic intervention: Interactive case discussion.

Glanc PA, Umranikar S, Koff DA. Fetal gender assignment by ultrasound evaluation of the pelvic organs in second and third trimester. 15th World Congress on Ultrasound in Obstetrics and Gynecology, Vancouver, Canada. September 25, 2005.

Kachura JR, Hanson JM, Kirby JM, Ho CS, Cole EH, Richardson RM. Gross hematuria after radiofrequency ablation of the liver using the Berchtold/Integra LifeSciences device. 106th annual meeting of the American Roentgen Ray Society, Vancouver, Canada. April-May, 2006.

Korczak D, Connolly B, Katzman D, Baron T, Bernstein S. Safety and efficacy of image-guided gastrostomy (G) and gastrojejunostomy (GJ) tubes in child and adolescent psychiatry patients. Academy of Psychosomatic Medicine, Santa Ana, NM. November 2005.

Macgowan CK, Madore B. Application of UNFOLD to real-time Fourier velocity encoding. 14th Scientific Meeting of the International Society of Magnetic Resonance in Medicine, Seattle, WA. May 2006.

Marotta TR. Intracranial angioplasty and stenting for impending stroke. 7th annual Interventional Neuroradiology Symposium, Toronto, Canada. September 9, 2005.

O’Connor S, Glanc P. Neonatal findings of fusion of the fornixal columns and absent cavum septum pellucidum. Presentation at Research Day, University of Toronto, Department of Medical Imaging, Toronto, Canada. April 25, 2006.

Provost Y. The clinical, echocardiographic, and magnetic resonance imaging features of Ebstein's Anomaly. 91st Scientific Assembly and annual meeting of the Radiological Society of North America, Chicago, IL. November 27-December 2, 2005.

RESEARCH PROGRAM

The Research Program

Research and education are the two pillars of academic medicine. Our department places equal emphasis on both. With respect to research, in the broadest sense, our research endeavors span the entire spectrum of scientific inquiry - from basic science to clinical trials. However, our focus is on translational and clinically applied research - imaging research whose results are intended to be applied in the clinic within 1-5 years. Our research program is jointly led by Andrea Kassner, PhD, and David Mikulis, MD - our Acting Research Program Co-Directors.

Research is an important mission of the Department of Medical Imaging. Many of the faculty, residents, and fellows in the Department devote considerable effort to research. The Department supports research through several projects depending on the interest and expertise of individuals and on resources at particular hospitals. Furthermore, several dedicated research faculty with appointments in Medical Imaging at each of the affiliated hospitals collaborate with the Department to help comprise a massively diverse research program.

A synopsis of the key initiatives is presented below. Also included below are the research grants and publications of the faculty who are not listed with one of the affiliated hospitals.

The Faculty Research Award

The Department provides support to allow a small number of radiologists to devote 50% of their time to research, while retaining the other half for clinical duties. The following radiologists are supported through this initiative:

- Dr. David Mikulis (TWH)
- Dr. Masoom Haider (PMH)
- Dr. Heidi Roberts (TGH)

The Medical Imaging Research and Development Awards

The Medical Imaging Research and Development Awards is an initiative intended to allow a select group of clinical radiologists with a strong research interest to devote at least one day each week to a defined research project. The radiologists listed in the table below were awarded the Medical Imaging Research and Development Awards in 2005-2006.
<table>
<thead>
<tr>
<th>Award Holder</th>
<th>Award Period</th>
<th>Hospital</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Beecroft</td>
<td>1/7/2005 – 30/6/2006</td>
<td>UHN/MSH</td>
<td>High pressure angioplasty balloon vs. non-high pressure balloon; Angioplasty in hemodialysis arteriovenous access stenosis</td>
</tr>
<tr>
<td>Korosh Khalili</td>
<td>1/7/2005 – 30/6/2006</td>
<td>TGH</td>
<td>Determination of tumor differentiation by CT/MR in hepatocellular carcinoma</td>
</tr>
<tr>
<td>Tae Kyoung Kim</td>
<td>1/7/2005 – 30/6/2006</td>
<td>UHN/TGH</td>
<td>Focal nodular hyperplasia and hepatic adenoma: Differentiation with contrast-enhanced real-time ultrasound with maximum intensity projection technique</td>
</tr>
<tr>
<td>Seon Kyu Lee</td>
<td>1/7/2005 – 30/6/2006</td>
<td>TWH</td>
<td>The evaluation of intracranial atherosclerosis using the BOLD MRI technique</td>
</tr>
<tr>
<td>Martin O'Malley</td>
<td>1/7/2005 – 30/6/2006</td>
<td>UHN/TGH</td>
<td>Growth rates of hepatocellular carcinoma stratified by size (renewed from July 1, 2004-05)</td>
</tr>
<tr>
<td>Yves Provost</td>
<td>1/7/2005 – 30/6/2006</td>
<td>UHN/TGH</td>
<td>CT coronary angiography (renewed from July 1, 2004-05)</td>
</tr>
<tr>
<td>Dheeraj Rajan</td>
<td>1/7/2005 – 30/6/2006</td>
<td>UHN/TGH</td>
<td>Interventional research/Research in minimally invasive therapy (renewed from July 1, 2004-05)</td>
</tr>
<tr>
<td>Heidi Roberts</td>
<td>1/7/2005 – 30/6/2006</td>
<td>UHN/TGH</td>
<td>Early lung cancer detection using computed tomography (renewed from July 1, 2004-05)</td>
</tr>
<tr>
<td>Kong Teng Tan</td>
<td>1/7/2005 – 30/6/2006</td>
<td>UHN/TGH</td>
<td>CT venography – Evaluate an algorithm to maximize native arteriovenous fistulae (AVF) for hemodialysis access</td>
</tr>
<tr>
<td>Lawrence White</td>
<td>1/7/2005 – 30/6/2006</td>
<td>UHN/MSH</td>
<td>Quantitative T2 mapping of cartilage transplantation in an animal model (renewed from July 1, 2004-05)</td>
</tr>
<tr>
<td>Stephanie Wilson</td>
<td>1/7/2005 – 30/6/2006</td>
<td>UHN/TGH</td>
<td>Addition of quantitative analysis to contrast enhanced ultrasound of the liver</td>
</tr>
</tbody>
</table>

Multidisciplinary Research Program – Translational Research Grant

The final results of this year's competition for Seed Grant funding as part of our departmental initiative to build our multidisciplinary research programs are as follows:

Dr. Mostafa Atri - Ultrasound Assessment of Tumor Perfusion
Dr. Andrea Doria - Pediatric Musculoskeletal Imaging
Dr. Masoom Haider - Advanced Prostate Cancer Imaging
Dr. Roberta Jong - Breast Imaging Research
Dr. Heidi Roberts - Lung Nodule Characterization Using CT Perfusion and PET
Dr. Manohar Shroff - Neuroimaging and Plasticity in the Immature Brain
Dr. Lawrence White - Cartilage Imaging and Characterization

All awardees are expected to write a peer-reviewed grant by the end of this calendar year, and to be successful with their grant applications by the end of 2007.

RSNA Roentgen Resident/Fellow Research Award

The RSNA Research and Education Fund offers this Award annually to recognize and encourage outstanding residents and fellows in radiology research. Each year the director of the residency program or the department chair will nominate an individual based on publication and presentation of scientific papers, receipt of research grants or successful contributions to the departmental research program. In 2006, Noel Fanning, MD received this award for his significant academic and research contributions to neuroradiology.

Research Day

Annual forum for highlighting research accomplishments, which was held on April 25, 2006. It consisted of presentations from senior residents, the faculty who received the Medical Imaging Research and Development Awards, and many other members of the department. An excerpt from the Program for Research Day is included at the end of this section.

Positron Emission Tomography Centre, Centre for Addiction and Mental Health

The Vivian M. Rakoff Positron Emission Tomography (PET) Centre under the direction of Dr. Sylvain Houle, located at the Centre for Addiction and Mental Health, fosters multidisciplinary research within the University of Toronto neuroscience community. The PET Centre is part of the University Functional Imaging Research Network (FIRN) and the provincial BRAIN research network. The intramural research at the PET Centre itself is focused on basic research in PET methodology (radiochemistry, neuroscience and physics) and in clinical application of PET to the understanding and treatment of mental disorders (schizophrenia, depression and aging) and addiction.

The PET Centre has recently developed a new selective PET radioligand for the serotonin transporter which is now being applied to the study of selective serotonin reuptake inhibitors (SSRIs) used to treat depression. Even though SSRIs have been prescribed for the treatment of depression in millions of patients but, up to now, it had not been possible to directly measure its effect in the brain. This new tracer, [C-11] DASB, is new being adopted by other leading PET research centres worldwide.

Another research programme within the PET Centre explores the role of the dopamine system in schizophrenia. Although the effects of antipsychotic medications are known to be linked to their effects on the dopamine system, very little is known about their actual mechanism of action in the brain. New insights in the role of the dopamine system have been obtained by closely linking
human findings obtained with PET with those obtained from animal research. This approach is already providing clinical benefits in the treatment of schizophrenia by providing objective means of optimizing existing treatments and by offering new avenues for the development of more effective drugs.

Imaging/Bioengineering Research, SWCHSC

Imaging research is a major focus of the Imaging/Bioengineering Research group at Sunnybrook and Women's College Health Sciences Centre (SWCHSC). Scientists in this group have University of Toronto appointments in the Department of Medical Biophysics, or the Department of Medical Imaging, or both. The faculty in this group make use of exceptional resources for research at SWCHSC and conduct research involving x-ray, nuclear medicine, magnetic resonance, and ultrasound technology. This group is internationally recognized for its excellent graduate student program.

Image Guided Minimally Invasive Therapy (IGMIT)

This research program has received large extra-mural grants from Technology Ontario, the Canadian Foundation for Innovation, the ORDCF, and from the commercial sector. It is part of the University of Toronto wide collaborative program "Functional Imaging Research Network" (FIRN), and the Ontario wide collaborative programs, Ontario Consortium for Image Guided Surgery (OCITS), and the Imaging Network of Ontario (INO).

The IGMT project has been in existence since 1995. The principal investigator is Dr. Walter Kucharczyk. There are many co-investigators and collaborators, especially in Neurosurgery under the leadership of Dr. Mark Bernstein, and in Medical Biophysics under the leadership of Dr. Mike Bronskill. The main thrust of this research program is the development and clinical implementation of multi-parametric imaging that demonstrates anatomic, physiologic, and functional tissue characteristics, with subsequent use of these multi-parametric tissue maps for image guidance in minimally invasive and surgical procedures. Much of the initial work has focused on open-concept MRI systems and the brain. Components of this project include image processing and analysis, neuro-navigation, pulse programming, thermometry, surface coil development, robotics, and MRI compatible surgical tools.

Downtown Imaging Physics Group

Research scientists from the Department of Medical Imaging's affiliates: The University Health Network and the Hospital for Sick Children comprise this core group of imaging physicists and scientists in the downtown sector. Research areas focus on clinical translation and include but are not limited to Magnetic Resonance Imaging (MRI) physics, physiologic specific imaging, clinical applications in MRI, Dynamic CT, functional MRI and Magnetoencephalography (MEG) mapping methods as well as investigations in sensory and cognitive function. Individual projects of this group are briefly outlined below:
Projects by Andrea Kassner, PhD – UHN

1. Prediction of hemorrhage in acute ischemic stroke using permeability MRI
Increased risk of intracranial hemorrhage limits the general use of tissue plasminogen activators (t-PA) in acute ischemic stroke (AIS). Preliminary results of this study shows that early blood-brain-barrier (BBB) defects in AIS can be assessed using quantitative DCE MRI. Significantly increased permeability was found in 3 cases which later on hemorrhaged. This method has potential to identify patients at higher risk of HT and may allow to use physiological imaging rather than time from onset of symptoms to guide the decision to treat with t-PA. This work has resulted in 1 paper, several abstracts and a successful grant application (CIHR).

Collaborators: David Mikulis, Anne Martel

2. Functional MRI measures in brain tumors
Physiological MR imaging including diffusion (to assess tumor cellularity), dynamic contrast-enhanced (DCE) MRI (to assess blood volume and microvascular permeability related to angiogenesis) and spectroscopy (to assess metabolism) offer insights into aspects of tumor physiology and metabolism, thus allowing characterization of tumor dysfunction. These techniques will assist with monitoring of cancer related therapies. Furthermore the use of combinatorial approaches such as factor analysis may yield even higher specificity in determining prognosis and treatment response. Software developments and validation studies for this project are ongoing.

Collaborators: Fang Liu, Cynthia Menard, Norman Laperriere, Cedara Softw Corp

3. Assessment of cerebral vascular reactivity (CVR)
Combining CO2 manipulation with BOLD MRI is a promising for assessing regional differences in cerebrovascular reactivity (CVR) which is measurement of the brains autoregulatory capacity which is important for the assessment of vascular disorders in which autoregulation is compromised or exhausted. Since this technique is beginning to be used pre-operatively to guide surgical decision making and to assess efficacy of revascularization, knowledge concerning reproducibility and gender differences are essential. This work has resulted in several abstracts, 1 submitted paper. We plan to adapt this methodology for use in children; it has been used in 150 adults so far.

Collaborators: Adrian Crawley, Julien Poublanc, David Mikulis, Joe Fisher

4. Imaging of angiogenesis in experimental arthritis
Juvenile idiopathic arthritis is a chronic disease that may impair any joint of the body. It produces inflammation of the synovium, which is a highly vascularized membrane that overlies the bones at the joints. The inflamed synovium in arthritis erodes the adjacent cartilage and bone. The sooner the arthritis is treated, the milder is the progression of the disease. Although conventional imaging modalities exist to evaluate the degree of inflammation and degeneration of the articular cartilage, such as anatomic magnetic resonance imaging, they are unable to depict articular changes before the joint is destroyed. In this study we plan to induce arthritis in rabbit knees and to determine whether functional magnetic resonance imaging such as permeability or BOLD imaging is able to monitor the response of the joints to treatment using non-steroidal
antinflammatory drugs and a technique of continuous movimentation of the rabbit legs by means of a machine which is called continuous passive motion.

Collaborators: Andrea Doria, Adrian Crawley, Hai-Ling Chen

5. DTI assessment in tumors and in healthy brain
Diffusion tensor imaging identification and characterization of white matter tracts according to the direction and degree of anisotropic water diffusion within them. Quantifying the degree of anisotropy in terms of the quantity, fractional anisotropy, or FA offers insight into white matter development and degradation, for example in the presence of infiltrating cerebral neoplasm. Additionally, white matter tractography or fiber tracking based on the same data acquisition allows descriptive delineation of white matter fiber paths and their potential displacement by mass lesions.

With a view to quantifying the intactness of white matter in the vicinity of tumor, we define a quantity FDi, or fiber density index, as an indicator of the density of white matter fibers within the bundle passing through a single pixel or region of interest. We have correlated this measure with the related quantity, fractional anisotropy. This work resulted in 2 abstracts and 1 paper.

This work was further extended to assess FDi differences in white matter of the corpus callosum between healthy male and female volunteers. Women have a larger callosal area proportional to cerebral volume which suggests that a larger number of fibers are crossing through and hence inter-hemispheric transfer is enhanced. We hypothesized that we can document this using DTI. This led to 1 abstract and 1 paper submission.

Collaborators: Fang Liu, Tim Roberts, Januthy Thermakulasingam

Projects by Adrian Crawley, PhD – UHN

Cerebrovascular reactivity (CVR) projects (in collaboration with Dr. Mikulis)
Under my supervision, Julien Poublanc has developed a method to analyze the BOLD response to a CO₂ vasodilatory stimulus in order to create a map of the vascular arrival time of CO₂ bolus and a separate map of the arteriolar response time. He is also conducting a comparison between these arrival time maps and those generated by conventional bolus gadolinium scans. The aim is to investigate whether the CVR exam can provide diagnostic information about the blood supply to an ischemic area as well as the remaining cerebrovascular reserve.

I have also provided extensive co-supervision to Danny Mandel, with regard to a theoretical analysis of various possible confounds that could potentially contaminate the quantitative flow imaging capabilities of arterial spin labelling (ASL). We have concluded that the potential for BOLD contamination is larger than was assumed by early investigators who adopted a fast-exchange model for labelled spins "perfusing" into the brain parenchyma. Since it is now generally accepted that a considerable number of labelled spins remain in the intravascular space, BOLD modulation of this signal is possible and should be minimized by the use of a minimum-TE spin-echo EPI acquisition. We have a specialized interest in using ASL to measure flow...
under conditions of 100% inspired O₂, which requires an assessment of the T₁ effects of arterial plasma O₂ as a potential confound. As a result, we are adopting a strategy of using other methods such as phase-contrast MRA to properly assess whether O₂ is a vasoconstrictor in the brain (disputed in the literature).

Other projects:
James McCurdy is completing his M.Sc. project under my supervision. His project is in collaboration with Dr. Guha and Dr. Mikulis. He is analyzing quantitative MRI (DTI – ADC and FA; permeability – kps and fBV) ROI data from ~5 low grade gliomas and ~11 high grades to assess the discriminative power of these measures for early detection of low grade conversion to high grade tumours. We are focussing particularly on whether the data demonstrate any significant differences in ADC/FA/fBV patterns in non-enhancing low-grade compared to non-enhancing tissue peripheral to the central enhancing region in the high-grades.

Voxel-based morphometry projects are continuing in various schizophrenia populations in collaboration with Dr. Eva Chow (CAMH). I continue to be involved in several fMRI projects. In particular, Dr. Ian Tannock (PMH) has a large on-going project (over 60 subjects already scanned) involving the effects of chemotherapy on cognitive performance, for which I have done all the fMRI analysis.

Projects by Marshall Sussman, PhD - UHN

1) **Cardiac:**
My research has primarily involved two different areas: motion compensation and T₂ mapping. I will discuss each of these in turn. My main collaborators for this work are Naeem Merchant, Jeff Stainsby, and Chris Macgowan.

The first area of my research deals with the development of techniques for motion compensation. This technique is known as the SIMNAV method. The advantage over conventional methods is that it uses the image data itself, rather than external devices such as ECG, to correct for motion. As a result, it is potentially more accurate and robust than conventional motion compensation methods. An additional advantage is that this approach may be applied to any type of motion. As a result, there are a broad range of applications. To date, we have explored the applications of cardiac imaging and the assessment of joint kinematics with this technique. Other areas, such as abdominal and neuro imaging, are planned for the future. In the past year, this work has resulted in 3 abstracts and 1 paper.

A second area of interest in cardiac imaging is T₂ mapping. To date, we have successfully implemented at UHN a T₂ mapping pulse sequence, as well as T₂ mapping post-processing software. The T₂ value of tissue can potentially provide information in a broad range of disease processes. At the present time, we are using it to assess the state of the myocardium in patients with cardiomyopathies, patients with iron overload disease, and to quantify blood oxygen level. Utilizing these techniques, we are currently participating in an international multi-centre trial regarding T₂ mapping and iron quantification in the heart and liver (TCRN – Thalassemia Clinical Research Network).
2) Musculoskeletal:
I have primarily been involved in three different areas of research for MSK imaging: T2 mapping, diffusion-weighted imaging, and joint kinematics. I will discuss each of these in turn. My main collaborator for this work is Lawrence White.

The first area of my research in MSK imaging is T2 mapping. As with the cardiac T2 mapping projects discussed above, we have implemented a T2 mapping pulse sequence, as well a number of different versions of T2 mapping post-processing software. A major focus of this study was the evaluation of cartilage degeneration in surgically-treated horse knees. T2 maps were obtained from a total of 10 horse knees. This project was carried out under funding provided by a Canadian Arthritis Foundation (CAN) grant. A paper has been accepted for publication based on this work, and one abstract has been published. We have also begun some investigations into more sophisticated T2 analysis techniques, using some of the methodology previously developed. Data analysis is under way.

A second area of interest is in diffusion-tensor imaging (DTI) of muscle. DTI provides an indication of the direction of water diffusion. This is particularly useful in highlighting the structure of anisotropic tissues like muscle fibers. The ultimate objective is to determine if DTI can provide a novel measure of the integrity of muscle fibers. One abstract has been published based on this work, and a paper has been submitted.

A third area of interest in MSK is the imaging of joint kinematics. The technical development for this project is derived from the SIMNAV technique, developed as part of the cardiac research project described above. As mentioned earlier, this general motion compensation strategy can be applied to almost any type of motion. Currently, we are investigating its use in the imaging of joint kinematics. A grant has been submitted based on this work.

3) Interventional MRI:
In surgical procedures, one must often navigate through the body based on information contained within previously acquired medical images. A major challenge associated with this task is correlating the information contained within the images with the actual coordinate system of the body. For this project, a surgical navigation system has been developed which tracks the position of surgical instruments during the surgical procedure via an infrared camera. This tracking information is displayed graphically and in real-time on top of the previously-acquired images. This allows the surgeon to directly correlate the surgical and image coordinate systems. This navigation system has been used successfully in brain biopsy procedures, as well as lymph node excisions from the abdomen. We are also currently applying these techniques to lung biopsies. In the past year, this work has resulted in 3 abstract publications. My main collaborators for this work are Walter Kucharczyk and Michael Jewett.

4) Miscellaneous:
I am also involved in other miscellaneous projects. These include the development of novel data acquisition strategies (Spiral-PR), the development of real-time MR techniques, the development of motion tracking algorithms. In total, this work has resulted in 1 abstract, 1
patent submission, and 1 paper accepted for publication. My main collaborators for this work are Timothy Roberts, Jeff Stainsby, Masoom Haider, and Michael Noseworthy.

Projects by Chris Macgowan, PhD - HSC

MRI Measurement of Pulmonary Blood Flow in Pulmonary Hypertension
Collaborators: Shi-Joon Yoo, Jaques Belik

The effect of pulmonary hypertension on pulmonary vascular function has previously been investigated using non-invasive imaging methods to measure blood-flow velocities; however, studies have been hampered by the poor accessibility of the pulmonary vessels to these methods. Ultrasound cannot penetrate the lungs while small vessels (diameter < 5 mm) are difficult to delineate accurately in phase-contrast (PC) magnetic-resonance (MR) images.

An evaluation of flow velocities in the many peripheral pulmonary vessels (e.g., segmental and sub-segmental) would also be tedious using existing post-processing methods. As a result, imaging studies of blood-flow velocity have focused on the large proximal vessels and provide only indirect information about distal vascular function and disease. We are developing and evaluating an automated method to measure blood-flow velocities throughout the pulmonary vasculature, including the smaller peripheral vessels. This additional hemodynamic information is relevant to the study of pathologies that mainly affect peripheral vessels, such as pulmonary hypertension, and pathologies with a geographic pattern of involvement, such as peripheral pulmonary stenosis.

Measurement of Lung Water Clearance using MRI
Collaborators: Hugh O'Brodovich, Paul Babyn

Indirect measurements suggest that the ability to clear airspace fluid correlates with morbidity and mortality in patients with pulmonary edema. In order to evaluate potential therapy options, accurate fluid clearance measurement methods are needed.

Currently fluid clearance is measured by instilling fluid laced with a tracer molecule. After an hour or so, the fluid is removed and the tracer concentration increase yields the fluid-clearance rate. Although reliable fluid clearance rate estimates are obtained, the relative contributions of different parts of the lung are still unknown. In this work we are developing an MRI technique to image regional pulmonary fluid clearance.

Projects by Hai-Ling (Margaret) Chen, PhD – HSC

My primary research interest is developing functional and molecular MRI of the microcirculation. Basic physics research on MRI methodologies and applications research, in both animal models of disease and clinical trials, are undertaken. Following are current projects.
1. Molecular and functional magnetic resonance imaging of angiogenesis in urinary bladder regeneration.
 Principal Investigator: Cheng HL
 Collaborators: Farhat WA, Towner RA

2. In-vivo monitoring of neural recovery following stem-cell therapies in an animal model of stroke.
 Principal Investigator: Stanisz G
 Co-investigators: Morshead C, Lobaugh N, Cheng HL, Graham S

3. Functional MR imaging for early detection and physiologic characterization of inflammatory arthritis in a rabbit model.
 Principal Investigator: Doria AS
 Co-investigators: Belik J, Kassner A, Tomlinson G, Yeung R, Cheng HL, Crawley A

Projects by Douglas Cheyne, PhD – HSC

My research is focused on the development of neuroimaging methods using Magnetoencephalography (MEG) – a new imaging technology that monitors brain function non-invasively, by detecting small magnetic fields produced by neural activity. We use mathematical models to localize the generators of the measured fields to produce images of activity patterns throughout the brain. This neuromagnetic imaging method has applications in the diagnosis of abnormal brain activity in disorders such as childhood epilepsy, as well as aiding in the localization of various functional cortical areas prior to surgery. Our laboratory is developing new analysis methods for the application of neuromagnetic imaging to the study of various sensory, motor and cognitive processes and their impairments in adults and children. Our goal is to provide new tools for the study of basic and higher brain function in health and disease.

Projects currently underway include: mapping the organization of auditory and somatosensory and language areas in children; measuring cortical oscillatory activity associated with somatosensory stimulation and movement; studies of motor inhibition in childhood disorders such as ADHD; neuromagnetic imaging of motor cortex function in children with cerebral palsy; and localization of neural activity associated with visuomotor integration. Selected publications from this work are listed below.

Projects by Martin Yaffe, PhD – SWCHSC

Digital mammography is a new technology for producing x-ray mammograms of the breast. My laboratory has been carrying out research in this area since the early 1980s and has built one of the world's first prototype systems. In digital mammography, the film normally used for recording the image is replaced by an electronic x-ray detector which we have designed. The electrical signal from the detector is digitized and stored in computer memory to form a digital image. This image can then be displayed and adjusted interactively by the radiologist to facilitate detection of small breast cancers. Current research projects are:
• Research on improved early detection of breast cancer - digital breast tomosynthesis
• Study of etiology of breast cancer and means of prevention. Breast density as a biomarker for breast cancer risk
• Development and evaluation of contrast-enhanced digital mammography
• Development of solid state high resolution x-ray detectors for digital radiography
• Optimization of image quality in radiology – quality control program for digital mammography
• Development of new methods for whole-mount histopathology - improved imaging/pathology correlation

Faculty List – non-clinical

(Academic Rank as of June 30, 2005)

• Martin J. Yaffe Professor Senior Scientist, SWCHSC
• Sylvain Houle Associate Professor Director, PET Centre Centre for Addiction and Mental Health
• Douglas Cheyne Associate Professor Senior Scientist, HSC
• Curtis B. Caldwell Assistant Professor Physicist, SWCHSC
• Adrian Crawley Assistant Professor MR Physicist, UHN
• Andrea Kassner Assistant Professor Scientist, UHN
• Christopher Maegowan Assistant Professor Scientist, HSC
• Marshall Sussman Assistant Professor MR Physicist, UHN
• Hai-Ling Cheng Assistant Professor MR physicist, HSC

Grants

Members of the Department of Medical Imaging (underlined) were investigators on the following grants, identified by the principal investigator, other investigators, project title, sponsor, total amount of grant, and start and end dates of the funding period.

Bitar R – CHAR/Amsterdam Health Development Award, First Canadian Recipient, $12,000.

Boyd NF, Yaffe M. Determinants of breast tissue composition in young women. National Cancer Institute of Canada (NCIC) and Canadian Breast Cancer Research Alliance (CBCRA), $1,309,434, 2003/07 – 2006/06

Caldwell CB, Mah K, Turksen IB, Ung YC, Danjoux CE, Ehrlich LE – Principal Investigators. A Fuzzy logic expert system for radiation targeting. Philips Medical Systems, Inc. $125,000/year (2 years total) 2004–2005

Crawley A – Co-investigator. CIHR Operating Grant, PI: L deNil. Neuroimaging studies of auditory processing in individuals who stutter. $82,344 pa 2004–2009

Crawley A – Co-investigator. CIHR Operating Grant, PI: E Chow. 22q11 deletion syndrome: Children at high risk for psychiatric disorders. $81,508 pa 2005–2008
Henkelman RM, Bronskill MJ, Burns PN, Foster FS, Plewes DB, Rowlands JA, Wright GA, Yaffe MJ. Medical imaging for cancer. National Cancer Institute of Canada (NCIC), Terry Fox Program Project $7,129,222, 2001/07 – 2006/06

Kassner A – Principal Investigator. Can stabilization of the blood brain barrier be achieved in ischemic endothelium using corticosteroids: An MRI permeability study in a rodent model of acute ischemic stroke. Dean's Fund (University of Toronto, Faculty of Medicine). $10,000 (total), 2005–2006

Kassner A – Principal Investigator. Widening the therapeutic window and reducing treatment morbidity in acute stroke: Assessment of blood-brain-barrier integrity with permeability MRI. Canadian Institutes of Health Research (CIHR). $ 260,000 (total), 2005–2008

Kassner A – Principal Investigator. Stabilization of the blood-brain-barrier (BBB) will delay progression of BBB defects: a permeability study in a rat model using MRI. Project date: UHN Medical Imaging Excellence and Research Award. $30,000, 2005–2006

Macgowan C – Co-Applicant. Heart and Stroke Foundation (Grants-in-Aid), PI: G Cohen. Left ventricular mass regression following stentless and stented aortic valve replacement: Follow up of a randomized trial. $89,350 (total), 2004/07 – 2006/06

Macgowan C – Principal Investigator. Canadian Institutes of Health Research (Operating Grant), Co-Applicant: S-J Yoo. MRI assessment of pulmonary hemodynamics within the lungs. $212,279 (total), 2004/10 – 2007/09

Shroff M, Taylor M, DeVeber G, Cheyne D. University of Toronto Dept. of Medical Imaging Seed Grant, Neuroimaging and plasticity in the immature brain. $105,000, 2005–2008

Sussman MS (Principal Investigator for University Health Network site), Ontario R&D Challenge fund (ORDCF), Ontario Consortium for Cardiac Imaging (OCCI), $1,886,700 total 2001–2007 (funding includes ORDCF, private sector and institution component)

Publications

Members of the Department of Medical Imaging (underlined) are also members of the Research Division.

Arslan MC, Caldwell CB, Turksen IB. Comparison of FCM clustering with crisp k-mean clustering in radiation treatment planning for non-small cell lung carcinoma J Nuclear Medicine 2005; 46(5) p.462P.

Gaetz W, Cheyne D. Localization of sensorimotor cortical rhythms induced by tactile stimulation using spatially filtered MEG. Neuroimage. 2005 Dec 1; [Epub ahead of print]

Herdman T, Pang E, Gaetz W, Ressl V, Cheyne D. Spatiotemporal dynamics of neuromagnetic responses related to language production. Cerebral Cortex in press.

Sutcliffe TL, Gaetz W, Logan W, Shroff M, Cheyne D, Fehlings DL. Cortical reorganization with clinical change in hemiplegic cerebral palsy following constraint therapy. Submitted to Neurology

Books or Book Chapters

Roberts TP, Kassner A. High-grade gliomas: Diagnosis and treatment, Chapter 8: Imaging Tumor Biology – Physiological and Molecular Insights. Humana Press; 2006.

Abstracts and Scientific Presentations

Al-Kwifi O, Kellenberger CJ, Wright GA, Macgowan CK. Evaluating contrast kinetics in pediatric patients by acquiring 2D images during 3D contrast enhanced acquisition. Imaging Network Ontario (2005) – Senior Author

Biswas L, Detsky JS, Stainsby JA, Yoo SJ, Wright GA, Macgowan CK. Design of a real-time magnetic resonance imaging interface: Case study of real-time MR blood-flow measurement. Imaging Network Ontario (2005) – Senior Author

Cheng HL. T1 measurement of flowing blood and arterial input function determination for quantitative 3D T1-weighted DCE-MRI. 14th scientific meeting of the International Society of Magnetic Resonance in Medicine, 385, May 2006, Seattle, WA.

Cheng HL. Wright GA. Rapid high-resolution T1 mapping by variable flip angles: Accurate and precise measurements in the presence of RF field inhomogeneity. 14th scientific meeting of the International Society of Magnetic Resonance in Medicine, May 2006, p. 2431, Seattle, WA.

Lobaugh NJ, Erlandsson A, Cheng HL, Gretka V, Morshead C, Stanisz GJ. Brain tissue regeneration following activation of endogenous stem cells in animal model of stroke. 14th scientific meeting of the International Society of Magnetic Resonance in Medicine, 1464, Seattle, USA, 6-12 May, 2006.

Macgowan CK, Madore B. Application of UNFOLD to real-time Fourier velocity encoding International Society of Magnetic Resonance in Medicine (2006) – Principal Author

van Amerom JFP, Macgowan CK. Pulmonary vessel segmentation using phase-contrast MRI and correlation analysis: Pulsatile flow phantom validation. Imaging Network Ontario (2005) – Senior Author

Patents

Sussman MS, Roberts TPL. Spiral-PR: A New Polar k-Space Trajectory, Pending.

Invited Presentations

Dockstader CL, Gaetz W, Cheyne D, Tannock R. Beta rebound in the human somatosensory cortex can be influenced by higher cognitive processes. 15th International Conference on Biomagnetism, 2006, Vancouver, Canada.

Kassner A. Beyond perfusion: assessment of cerebral vascular reactivity using BOLD MRI. University of Illinois, Chicago, July 2005

Kassner A. MR perfusion. MSc lecture series at McMaster University, Hamilton, Canada, Oct 2005

Kassner, A. Towards biological imaging of brain tumors. Karmanos Cancer Centre, Detroit, Oct 2005

Kassner, A. Window into the brain: non-invasive lesion characterization using functional MRI. Hospital for Sick Children, Toronto, Oct 2005

Kassner, A. Perfusion and permeability in stroke. ASNR, San Diego, May 2006

Macgowan C. Can we image microvascular flow in our patients? 2nd Annual Toronto Symposium – Contemporary Questions in Congenital Heart Disease, The Right Heart, Toronto, Canada – June 18, 2006. Sponsor: Hospital for Sick Children

Macgowan C. Hemodynamic characterization using MRI. Biomedical Engineering and Medical Biophysics Seminar Series, London, Canada – April 6, 2005. Sponsor: University of Western Ontario, Depts. of Biomedical Engineering and Medical Biophysics
Macgowan C. Real-time MRI. Pediatric Cardiovascular MR Symposium, Toronto, Canada – April 3, 2005. Sponsor: Society for Pediatric Radiology

Macgowan C. How to reduce magnetic resonance artifacts. Pediatric Cardiovascular MR Symposium, Toronto, Canada – April 3, 2005. Sponsor: Society for Pediatric Radiology

McVeigh P, Bostan A, Cheyne D. Comparison of dipole fit and beamformer localization with different head models: Simulations using a realistically shaped physical model. 15th International Conference on Biomagnetism, 2006, Vancouver, Canada.

Yaffe MJ. The continuing development of new imaging systems. RSNA Nov. 29, 2005.

Yaffe MJ. Digital X-Ray and PACS Forum Mar. 4, 2006, Hilton Head

 a. Digital Mammography: The Physicist's Perspective, Present & Future
 b. Digital Mammography Workstations
 c. Digital Tomosynthesis

Yaffe MJ. Development of a quality control program for digital mammography. SCAR, April 2006, Austin, TX.

Teaching - Hours of Lectures

<table>
<thead>
<tr>
<th>Faculty Member</th>
<th>Students</th>
<th>Residents, Fellows, Faculty</th>
<th>Technologists</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.B. Caldwell</td>
<td>4</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>S. Houle</td>
<td>10</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Faculty Member</td>
<td>Students</td>
<td>Residents, Fellows, Faculty</td>
<td>Technologists</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>M.J. Yaffe</td>
<td>6</td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>A. Kassner</td>
<td>2</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>M. Sussman</td>
<td>0</td>
<td>18</td>
<td>0</td>
</tr>
</tbody>
</table>
DEPARTMENT OF MEDICAL IMAGING
ANNUAL RESEARCH DAY 2006

Date: Tuesday, April 25, 2006
Location: J.J.R. MacLeod Auditorium
Starting Time: 12:00 PM with welcome by Walter Kucharczyk

Abdominal, Pelvis, GI, and GU Imaging
Session Chair: Mostafa Atri

12:10 PM Ants Toi
Do additional lateral cores increase prostate cancer detection compared to the standard sextant biopsy?

12:17 PM Masoom Haider
Diffusion Weighted Imaging for Localization of Prostate Cancer

12:24 PM Hyun-Jung Jang
Enhancement Patterns of Hepatocellular Carcinoma on Contrast-enhanced Ultrasound – Correlation with Pathologic Differentiation

12:31 PM Kartik Jhaveri
Comparison of CT Histogram analysis to adrenal washout CT in diagnosis of lipid poor adenomas

12:38 PM Emma Robinson
MRI imaging and clinical response of adenomyosis to uterine artery embolization

12:45 PM M. Aeja Syed
Hepatic and Portal Venous Thrombosis Associated with Hepatic Abscess

12:52 PM Brian Yeung
Does Radiology Consultation Pre-Imaging Affect the Outcomes of CT Renal Colic Scans?

12:59 PM Tae Kyoung Kim
Focal Nodular Hyperplasia and Hepatic Adenoma: Differentiation with Low-MI Contrast-enhanced Ultrasound – Work in Progress

1:06 PM Neil Rosta
Emergency CT Imaging for Acute Abdominal Aortic Disease - Are Utilization Patterns Changing?

1:13 PM An Tang
Hepatic vein transit times using a microbubble agent to predict severity of hepatic disease non-invasively

1:20 PM Bina Lanka
Impact of Contrast Enhanced Ultrasound in a Tertiary Clinical Practice

1:27 PM Richard Bessell-Browne
Pheochromocytoma and paraganglioma: Risk of adverse events with IV nonionic contrast material for CT

1:34 PM Martin O'Malley
Testicular Cancer Surveillance: Standard versus Low Dose CT

1:41 PM Marie Staunton
Can CT reliably distinguish moderately from poorly differentiated hepatocellular carcinoma?

Breast, Chest, and Cardiac
Session Chair: Narinder Paul

1:50 PM Roberta Jong
The Results of the Digital Mammographic Imaging Screening Trial - DMIST

1:57 PM Oana Moscovici
Characteristics of Breast MRI Screen-detected lesions that should be sent for targeted Ultrasound

2:04 PM Raafat Abou Saif
The Value of Breast Imaging in Diagnosis of Breast Cancer in Patients with Nipple Discharge

2:11 PM Moussumi Bhaduri
Outcome of Breast MRI for screening breast cancer in mixed population of women

2:18 PM Andre Pereira
Assessing the performance of CAD for lung nodule detection: effect of radiation dose

2:25 PM Hamid Bayanati
Low-dose Computed Tomography in Prior Asbestos-exposed Workers: Assessment of lung nodules and pleural plaques

2:32 PM Igor Sitarchouk
Dynamic CT perfusion for Lung Nodules Characterization

2:39 PM Hany Mehdizadeh-Kashani
Effect of slice thickness and algorithm reconstruction on the performance of CAD for lung nodule detection

2:46 PM Katherine Zukotynski
Contrast Echocardiography Grading Predicts Pulmonary Arteriovenous Malformations at CT
Out of Hours CT Pulmonary Angiograms: Accuracy of Resident Reporting

Pulmonary High Resolution CT Findings in Patients with Congenital Bilateral Absence of the Vas Deferens

T2 MRI for Early Diagnosis of Myocardial Iron Overload in b-Thalassemia

Cardiac MRI Assessment of Cardiomyopathy in Patients with Cirrhotic Ascites

The Utility of a First-Generation Computer-aided Detection (CAD) Tool for the Diagnosis of Pulmonary Arterial Filling Defects

Diffusion Tensor MR Imaging and Fibertractography of the Human Calf: Results at 1.5T and 3.0T

Dynamic joint imaging using the similarity-based navigator (SIMNAV) motion compensation technique

Ultrasonography for Children with Hemophilic Arthropathy: How we do it.

Neonatal Findings of Fusion of the Forniceal Columns and Absent Cavum Septum Pellucidum

The Value of Ultrasound in Assessing the Need for Full vs Focused CT in Children Evaluated for Acute Appendicitis

Gadolinium Enhancement Predicts Hemorrhagic Transformation in Acute Ischemic Stroke

Cochlear implantation in patients with cochlear otosclerosis

Value of CTA-Source Images in Acute Stroke using ASPECT Scoring

Comparison of CTA to DSA in evaluating etiology of non-traumatic, non-subarachnoid intracranial hemorrhage

Differences in cerebrovascular reactivity in males versus females obtained using BOLD MRI and alternating states of end-tidal pCO2

Investigation of short TE inflow-based contrast for fMRI

Gender Differences in Water Diffusion of the Corpus Callosum: A Diffusion Tensor Imaging Study

Reviewer discrepancies in analyzing CT Heads and Shunt Series in children in which VP shunt obstruction is suspected

3T Intracranial arterial wall imaging: Clinical Impact

ASPECT Scoring of CT Perfusion in Early Stroke Visualization and Assessment

The Evaluation of Intracranial Atherosclerosis Using the BOLD MRI technique, Part 1: BOLD MRI Mapping of Cerebro-Vascular Reserve (Cerebro-Vascular Reserve) with Carotid Artery Oclusive Disease (CAOD): Value in Identifying Patients for Carotid Artery Revascularizations

Optimizing Gadolinium Enhanced MRA for Demonstration of the Artery of Adamkiewicz

CTA can predict hematoma progression in spontaneous intracerebral hemorrhage

Correlation between nasal dermoid cysts and foramen cecum size
Vascular and Interventional Radiology

Session Chair:

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:47 PM</td>
<td>John Kachura</td>
<td>Radiofrequency ablation of renal cell carcinoma using a multitined electrode: preliminary experience</td>
</tr>
<tr>
<td>5:54 PM</td>
<td>Ronjon Raha</td>
<td>Use of Prophylactic Antibiotics for Implanted Chest Port Insertions: Is There Reduced Risk of Infection?</td>
</tr>
<tr>
<td>6:01 PM</td>
<td>Dheeraj Rajan</td>
<td>Ultrahigh vs. high-pressure PTA of venous anastomotic stenosis in HD grafts: Is there a difference in patency?</td>
</tr>
<tr>
<td>6:08 PM</td>
<td>Marshall Sussman</td>
<td>Image-Guided Navigation in the Presence of Motion</td>
</tr>
<tr>
<td>6:15 PM</td>
<td>Richard Bitar</td>
<td>Distribution of Intraplaque Hemorrhage in Carotid Complicated Plaques Defined by High-Resolution Magnetic Resonance Direct Thrombus Imaging (hiresMRDTI)</td>
</tr>
<tr>
<td>6:22 PM</td>
<td>Murthy S. Chennapragada</td>
<td>Disproportionate increase in cardiac output with exercise in patients with high flow peripheral arterio-venous malformations</td>
</tr>
<tr>
<td>6:29 PM</td>
<td>Manish Taneja</td>
<td>Iatrogenic renal trauma: Patterns of arterial injury and endovascular management</td>
</tr>
<tr>
<td>6:36 PM</td>
<td>Walter Kucharczyk</td>
<td>Closing Comments</td>
</tr>
</tbody>
</table>
RESIDENT TRAINING PROGRAM

General Description

There were 48 residents in our program in the 2005-2006 year. The five-year program consists of one year of preliminary clinical training (PGY1), followed by four years of training in medical imaging.

The university-wide integration and rotational system ensures that each resident will have access to all the strengths of our large and expert faculty and the huge volume of clinical pathology. Residents have the opportunity to train at several large modern hospitals, doing so in groups of 5 – 10 trainees of all levels, thus maintaining a close working environment with peers and faculty. All hospitals are equipped with state-of-the-art equipment. Residents work daily with the best of general radiographic, ultrasound, CT and MRI technology. Several hospitals have digital image archiving and communication systems.

PGY1

PGY1 Clinical training is divided into two blocks, one eight-nine month block at core teaching hospitals and a two-three month block at a community hospital. During 2005 - 2006, the core teaching hospitals have been the Mount Sinai Hospital and the St. Michael’s Hospital. Community training is principally done at the North York General Hospital. The content of the PGY1 program included Medicine (General Medicine and Respiratory); Surgery (General Surgery, Orthopaedics, Urology, Neurosurgery, Obstetrics and Gynaecology); one month of Paediatrics; one month of Anatomy at the U of T Anatomy Department; and two months of elective choices. In the final month of PGY1, all residents come together for a Radiology Orientation Program, which introduces the trainees to physics, imaging equipment, clinical lectures, program issues and the core hospitals. The PGY1 rotation opportunities are reviewed annually, attempting to make the best of training choices in the clinical services.

PGY2

During 2005 - 2006, a PGY2 trainee spent the entire year at one or two of the three core teaching Departments (Mount Sinai – University Health Network, Sunnybrook and Women’s College Health Sciences Centre and St. Michael’s Hospital). There is a graduated increase in responsibility over the course of the year. In order to prepare residents to take night call (which starts in September), the year begins with a 10 week introductory program covering thoracic, GI, GU, CNS, MSK, CT and nuclear imaging. The remainder of the year consists of one or two month rotations in each of the above organ systems, as well as a one-month rotation in ultrasound.
PGY3

In 2005 - 2006, residents in this training year divided their rotations into three to six month blocks at hospitals different from that of their PGY2 training year. This allows the trainee an opportunity to see a different spectrum of pathology and to work with a different group of faculty. Rotations during the PGY3 year have included Breast Imaging, Neuroradiology, Ultrasound, Vascular-Interventional, and Nuclear Medicine as well as additional training in CT, MSK, GI and Chest. MRI training is included within all organ system rotations and is a strong component of all core hospitals.

PGY4

During this year, each resident spent a four-month block in Paediatric Radiology at the world famous Hospital for Sick Children. The other eight months is at one or two of the core hospitals. This year includes a two-month block of dedicated Angio-Interventional training. The resident also has four to six months of General Radiology rotations. The Armed Forces Institute of Pathology (AFIP) six-week rotation for Radiology-Pathology is scheduled during the General radiology time.

PGY5

The resident is usually allowed to use this year for electives, but this is conditional upon the resident having achieved an acceptable standard of competence in medical imaging. It may be spent concentrating on areas of relative weakness, or on subspecialty areas. Most residents include electives in obstetric ultrasound, cardiac imaging and Body MRI in this final year.

Armed Forces Institute of Pathology

All residents are encouraged to attend the Armed Forces Institute of Pathology in Washington, D.C., where they receive a six-week, intensive, didactic course in pathology correlated to imaging. This generally occurs during the PGY4 year. Some financial support is available. To date, we have been successful in reserving a sufficient number of positions at AFIP to permit all of our residents to attend at some point in their training.

Physics Instruction

All residents must be knowledgeable about the physics of medical imaging. To that end, intensive physics instruction is provided. One week courses are provided for the PGY1 and PGY3 years and there is also a five-day review course in the PGY3 or PGY4 year of training. These courses are organized by Martin Yaffe, Ph.D. (Department of Medical Imaging) and taught by the faculty of our department, the faculty of the Department of Medical Biophysics, and guest speakers.
Conferences

Residents are encouraged to attend imaging conferences, both to be involved in presenting papers or posters and also for the benefit of knowledge and interaction with the imaging community at large. During the PGY3 year, each resident is given the opportunity to attend a major imaging conference with the provision of financial support. The resident is not required to present at the conference to receive this support but does prepare a report following the meeting to highlight what they gained in their attendance. In addition, residents presenting papers or posters at recognized meetings generally receive financial support through affiliations with hospital imaging departments.

Seminars and Half-Day Program

Wednesday afternoons from September to June have been the focus for the academic program. There is a formal two to three hour weekly clinical seminar for PGY1, PGY2 and PGY3 residents. Most seminars are organized around organ systems and imaging modalities.

As well, there are special sessions for all resident years on non-clinical topics such as ethical and legal issues, practice management and career planning. Speakers from outside the Department add interest to the content of these featured sessions.

A 10 hour review series is provided for PGY5 residents each spring in preparation for the ABR and Royal College examinations.

Research

Residents in Medical Imaging are required to have a good foundation of research methodology and critical appraisal in order to either critically evaluate scientific medical literature or pursue independent research activities. Principles and issues of health technology assessment, quality improvement and clinical audits are also core components of the clinical research curriculum. Dr. David Mikulis is responsible for the design and delivery of the course curriculum, workshops, tutorials and lectures on these topics. Instruction in this curriculum is given throughout the Residency Program. In total, residents in Medical Imaging receive over 30 hours of course instruction.

Each resident is required to become involved in a research project beginning no later than the PGY3 year. All residents receive protected time to work on their project. The research is conducted in conjunction with one or more staff persons with a view to presenting the project during the PGY4 or PGY5 years at our Annual Research Day. The residents are encouraged to publish their results and to present them at national or international meetings.

Rounds

Teaching rounds, or small group conferences, are held at each of the core hospitals once or twice a day. University Division rounds are held for the entire department six to eight times annually at a central location.
View Box Teaching

Every resident in the PGY2 through to the PGY5 years receives daily teaching from faculty at the view box and in the procedure rooms. Teaching is based on the day’s cases, but may be supplemented with related cases from faculty teaching files. The amount of teaching varies from rotation to rotation but on average there are one to two hours of this type of one-to-one teaching daily. This program is widely recognized for the quality of teaching provided to residents. In addition, residents learn to teach others and are expected to teach students and observers in the Department.

Journal Club

This is organized by the residents and is held approximately five times annually.

Visiting Professor Program

This program of six lectures between October and April is organized by the CME Director of our department and is provided for all imaging specialists including community radiologists. Residents attend the lecture and reception. Visiting Professors from outside Toronto usually present resident teaching sessions at two or three of the teaching hospitals during their visits to Toronto.

Organ Imaging Review Course

This is a week-long, internationally recognized review course. It is given in September or October of each year. It is primarily intended as a CME course for practicing radiologists but also contains a wealth of valuable teaching material for residents. All residents are given some time off clinical services to attend, and can do so at no cost.

Program Evaluation

In addition to that carried out by the Radiologists-in-Chief and the teaching co-ordinators at each hospital, the residents complete an assessment of each rotation, and an annual assessment of the faculty’s teaching.

Program Supervision

This is the direct responsibility of the Program Director who is, in turn, responsible to the Departmental Chair and the Departmental Executive Committee. The Program Director is assisted by the Resident Training Committee, which is composed of a representative from each of the teaching hospitals, a PGY1 coordinator responsible for all PGY1 issues, as well as from Nuclear Medicine and the Research Committee. In addition, the University of Toronto Chief Resident in Medical Imaging and a resident representative from each year of training are full members of the committee.
There are Division Heads appointed for Cardiothoracic, Musculoskeletal, Abdominal, Pediatric, Vascular-Interventional, Breast Imaging and Neuroradiology. These Division Heads and the Program Director for Nuclear Medicine are responsible for rotation goals and objectives, suggested reading lists and recommendations regarding the resident lectures and seminars. Division Heads advise the Program Director and Resident Training Committee.

Resident Evaluations

- Evaluation consists of the following:
- An in-training evaluation completed following each rotation.
- A summary in-training evaluation at the end of each year of training.
- Results of the American College of Radiology multiple choice in-training examination, taken in the spring of each year.
- Results of a yearly oral examination based on the Royal College format (PGY2-5).
- Results of a written examination in physics following the PGY1 course.
- A practice OSCE examination in the spring of each year (PGY3-5).

Resident Awards

Outstanding residents are recognized by awards for clinical excellence, teaching and research.

1) **Gordon Potts Award**

This award of a commemorative plaque is made to the outstanding final-year resident, based on a combination of the following academic and personal strengths: Interpersonal skills, willingness to explore new methods and ideas, dedication to patient service and academic activities, intellectual capacity and publications in residency.

2005 - 2006 recipient: Dr. Jeffrey Jaskolka, PGY5

2) **Resident Teacher-Mentor Award**

This award will be made to a final year graduating resident, based on a combination of the following strengths and contributions: dedication to teaching, resident advocate and mentor, contribution to Resident Program and commitment to personal continuing educational growth.

2005 - 2006 winner: Dr. Jeffrey Jaskolka, PGY5
Dr. Ryan Margau, PGY5

3) **Research Awards**

Each year residents as well as fellows are nominated to receive the RSNA Research Award for Research excellence within the University of Toronto Department of Medical Imaging.
2005 - 2006 winner: Dr. Noel Fanning, Neuroradiology Fellow

Summary

The University of Toronto training program in Medical Imaging is designed to provide the best possible training in all aspects of imaging. The program is an intensive one, with considerable emphasis on teaching, in addition to exposure to a huge volume of clinical pathology. The university-wide integration and rotational system ensures that each resident will have access to all of the strengths of our departments.
RESIDENTS

PGY1 Level

Mark Baerlocher, MD
University of Toronto, 2005
Daniel Baxter, MD
McGill University, 2005
Ida Chan, MD
University of British Columbia, 2005
Perry Choi, MD
University of Toronto, 2005
Susan James, MD
University of Toronto, 2005
David Kelton, MD
University of Toronto, 2005

PGY2 Level

Alan Andrew, MD
University of Toronto, 2004
Hemi Dua, MD
University of Toronto, 2004
Dean Durant, MBBS
University of the West Indies, 2001
Jonathan Mandel, MD
University of Toronto, 2004
Aiden Mokhtassi, MD
University of Toronto, 2004
Christopher Mongiardi, MD
University of Ottawa, 2004
Elissa Price, MD
University of Toronto, 2004
Lara Richmond, MD
University of Toronto, 2004

PGY3 Level

Aditya Bharatha, MD
University of Toronto, 2003
Minoo Bozorgzadeh, MD
Iran Medical University, 1984
Philip Buckler, MD
University of Toronto, 2003
Patrick Cervini, MD
University of Toronto, 2003
Errol Colak, MD
University of Toronto, 2003
Kebby King, MD
University of West Indies, 1997
Robert Kurtz, MD
University of Toronto, 1996
Jeff Mandelcorn, MD
University of Toronto, 2003
Danny Mandell, MD
McMaster University, 2003
Alex Menard, MD
University of Ottawa, 2003
Jennifer Stimec, MD
University of Toronto, 2003
Jeremy White, MD
University of British Columbia, 2003

PGY4 Level

Louis-Martin Boucher, MD
University of Toronto, 2001
Meg Chiavaras, MD
University of Massachusetts, 2002
Christopher Dyck, MD
University of Toronto, 2002
Lenny Grinblat, MD
McMaster University, 2002
Winnie Lee, MD
University of Toronto, 2002
Andrea Milic, MD
University of Ottawa, 2002
Shantel Minnis, MBBS
University of West Indies, 1998
Emma Robinson, MD
University of Toronto, 2002
Neil Rosta, MD
Queen’s University, 1994
Rola Shaheen, MD
University of Jordan, 1996
Brian Yeung, MD
Queen’s University, 2002
Katherine Zukotynski, MD
University of Toronto, 2002
PGY5 Level

Gagan Ahuja, MD
University of Toronto, 2001

Harpreet Baweja, MD
McMaster University, 1994

Richard Bitar, MD
University of Toronto, 2001

Debra Chang, MD
University of Toronto, 2000

Deborah Cheng, MD
University of Toronto, 2000

Meaghan Hyland, MD
University of Ottawa, 2001

Jeffery Jaskolka, MD
University of Western Ontario, 2001

Ryan Margau, MD
University of Toronto, 2001

Elaine Martinovic, MD
University of Calgary, 2001

Matthew McInnes, MD
University of Toronto, 2001
NUCLEAR MEDICINE TRAINING PROGRAM

General Description

Nuclear medicine is a branch of medical practice primarily concerned with the use of unsealed radioactive sources in the diagnosis, and treatment of disease. Our program currently provides dual-certification in radiology and nuclear medicine. This is a six year (including PGY1) program which includes two years of subspecialty training in nuclear medicine (provided that the subspecialty training is taken following the completion of at least 18 months in Diagnostic Radiology, effective June 1, 1998).

The Nuclear Medicine Program provides formal instruction and training for both radiology and nuclear medicine residents. Formal lectures cover all aspects of nuclear medicine including cardiac and oncologic nuclear medicine, functional neuroimaging, radiopharmacy, nuclear physics, and general nuclear medicine. Residents have rotation specific goals, objectives and reading lists. There are biweekly teaching rounds for both radiology and nuclear medicine residents. The residents acquire skills by participating in daily clinical work. Didactic instruction is supplemented by teaching files at each hospital. Residents attend city wide teaching seminars and participate in journal club with teaching staff.

General Objectives

The goal of the nuclear medicine resident is to be able to function independently as a medical specialist with the ability to advise on, supervise, perform, and interpret all diagnostic procedures, and to achieve a level of competence in the performance of radiotherapy with unsealed radioactive sources so as to act as a consultant to referring physicians. The resident must acquire excellent communication and technical skills, and the knowledge and professionalism appropriate to a lifetime career in nuclear medicine.

Dual Radiology and Nuclear Medicine Residency

Applicants will be considered from candidates who are already in the Diagnostic Radiology Training Program at the University of Toronto, one to two slots per year are reserved for the dual certification program.
OBJECTIVE

The purpose of the Radiological Scientist Training Program (RSTP) is to provide a small group of radiology residents with the opportunity to develop skills important to the pursuit of independent research. These skills encompass research methodology, publications, grant writing, and presentations. The research training is intended to complement the excellent clinical training for which the Department of Medical Imaging is already recognized.

ORGANIZATION

The RSTP is a six-year program with two years of research and four years of clinical training. The Royal College of Physicians and Surgeons of Canada will accept one year of research towards fulfilling the requirements of the five year program in diagnostic radiology. The RSTP is able to accommodate as many as two residents per year. The first two years of the RSTP are identical to the regular radiology training program. The difference is in the PGY3 and PGY4 years which, in the RSTP, are entirely devoted to research. Research opportunities are available in many departments relevant to radiology. Under certain circumstances, residents in the RSTP may pursue a M.Sc. or Ph.D. degree. The final two years, PGY5 and PGY6, are designated for clinical training to fulfill the requirements of the Royal College of Physicians and Surgeons of Canada.

ELIGIBILITY AND APPLICATION PROCEDURE

Applications will be considered from candidates already accepted into the regular radiology training program and will occur during the PGY2 training year. A maximum of two places per year will be reserved for residents in the RSTP. Applicants need not have prior experience in research or a special background, but are expected to be self-motivated.

REMUNERATION

Residents in the RSTP will be remunerated commensurate with residents in the regular radiology training program, up to a maximum of the PGY5 level.

SELECTION OF RESEARCH PROJECT AND SUPERVISOR

Residents in the RSTP should select a project and a supervisor as soon as possible, and before the PGY3 year. The Director of Research and the Chair of the department can offer assistance with this selection. A supervisor may be selected from various University of Toronto departments, including Medical Imaging, Medical Biophysics, Anatomy, Physiology, Biochemistry, Computer Science, Clinical Epidemiology, or Electrical Engineering, specifically the Institute of Biomedical Engineering. The supervisor must have operating funds to support the research, but is not expected to provide remuneration for the resident. Candidates will be strongly encouraged also to apply for a fellowship from an agency such as the Medical Research...
Council, but acceptance into the RSTP will not be conditional upon success in obtaining such a fellowship.

Graduate Degrees

Residents in the RSTP are encouraged to pursue a graduate degree. The procedure depends somewhat on the department in which the research is to be conducted, but requires a separate application to that department and the School of Graduate Studies or Institute of Medical Sciences. Residents are responsible for fulfilling all requirements of the department in which they are registered as graduate students.

Clinical Responsibilities

During the two years of research training, residents in the RSTP will have minimal clinical responsibilities, probably limited to one on-call evening/night per week. In addition, residents in the RSTP are encouraged to maintain contact with clinical activities through attendance at select departmental rounds and teaching sessions. Such attendance will not be compulsory for RSTP residents in the two research years, as it is for residents in the regular training program.
OBJECTIVES OF TRAINING & SPECIALTY TRAINING
REQUIREMENTS IN DIAGNOSTIC RADIOLOGY

Definition

Diagnostic Radiology is a branch of medical practice concerned with the use of imaging techniques in the study, diagnosis and treatment of disease.

General Objectives

On completion of the educational program, the graduate physician will be competent to function as a consultant in Diagnostic Radiology. This requires the physician to have the ability to supervise, advise on and perform imaging procedures to such a level of competence, and across a broad range of medical practice, as to function as a consultant to referring family physicians and specialists.

Communication skills, knowledge, and technical skills are the three pillars on which a radiological career is built, and all are dependent on the acquisition of an attitude to the practice of medicine which recognizes both the need to establish a habit of continuous learning and a recognition of the importance of promoting a team approach to the provision of imaging services.

Residents must demonstrate the knowledge, skills and attitudes relating to gender, culture and ethnicity pertinent to Diagnostic Radiology. In addition, all residents must demonstrate an ability to incorporate gender, cultural and ethnic perspectives in research methodology, data presentation and analysis.

Specific Objectives

At the completion of training, residents will have achieved the following competencies so as to function effectively as:

i) Medical Expert/Clinical Decision-Maker

General Requirements

- Demonstrate diagnostic and therapeutic skills for ethical and effective patient care.
- Access and apply relevant information to clinical practice so as to have competence in clinical radiological skills.
- Demonstrate effective consultation services with respect to patient care, education and legal options.

Specific Requirements

- Understand the nature of formation of all types of radiological images, including physical and technical aspects, patient positioning, contrast media.
- Knowledge of the theoretical, practical and legal aspects of radiation protection, including other imaging techniques and their possible harmful effects.
• Knowledge of human anatomy at all ages, both conventional and multi-planar, with emphasis on radiological applications.
• Knowledge of all aspects of clinical radiology, including understanding of disease, appropriate application of imaging to patients, importance of informed consent, complications such as contrast media reactions, and factors affecting interpretation and differential diagnosis.
• Understand the fundamentals of quality assurance in radiology.
• Understand the fundamentals of epidemiology, biostatistics and decision analysis.
• Show competence in manual and procedural skills and in diagnostic and interpretive skills.
• Demonstrate the ability to manage the patient independently during a procedure, in close association with a specialist or other physician who has referred the patient. The radiologist should know when the patient’s best interests are served by discontinuing a procedure, or referring the patient to another physician.
• Understand the acceptable and expected results of investigations and/or interventional therapy as well as unacceptable and unexpected results. This must include knowledge of and ability to manage radiological complications effectively.
• Understand the appropriate follow-up care of patients who have received investigations and/or interventional therapy.
• Show understanding of a sound and systematic style of reporting.
• Competence in effective consultation, conduct of clinico-radiological conferences, and the ability to present scholarly material and lead case discussions.

ii) Communicator

• Establish appropriate therapeutic relationships with patients/families.
• Listen effectively.
• Obtain the appropriate information during consultation with referring physicians in order to be able to make recommendations regarding the most appropriate testing and/or management of patients.
• Discuss appropriate information with patients/families and the health care team, and be able to obtain informed consent for tests and procedures when this is needed.

Specific Requirements

• Have the ability to produce a radiological report which will describe the imaging findings, most likely differential diagnosis, and when indicated, recommend further testing and/or management.
• Understand the importance of communication with referring physicians, including an understanding of when the results of an investigation or procedure should be urgently communicated.
• Communicate effectively with patients and their families and have a compassionate interest in them.
• Recognize the physical and psychological needs of the patient and their families undergoing radiological investigations and/or treatment, including the needs of culture, race and gender.
iii) Collaborator

General Requirements
- Consult effectively with other physicians and health care professionals.
- Contribute effectively to other interdisciplinary team activities.

Specific Requirements
- Have the ability to function as a member of a multi-disciplinary health care team in the optimal practice of radiology.

iv) Manager

- Utilize resources effectively to balance patient care, learning needs, and other activities.
- Allocate finite health care resources wisely.
- Work effectively and efficiently in a health care organization.
- Utilize information technology to optimize patient care, life-long learning and other activities.

Specific Requirements
- Be competent in conducting or supervising quality assurance including an understanding of safety issues and economic considerations.
- Be competent in computer science as it pertains to the practice of radiology.

v) Health Advocate

General Requirements
- Identify the important determinants of health affecting patients.
- Contribute effectively to improve the health of patients and communities.
- Recognize and respond to those issues where advocacy is appropriate.

Specific Requirements
- Understand and communicate the benefits and risks of radiological investigation and treatment including population screening.
- Recognize when radiological investigation or treatment would be detrimental to the health of a patient.
- Educate and advise on the use and misuse of radiological imaging.

vi) Scholar

General Requirements
- Develop, implement and monitor a personal continuing education strategy.
- Critically appraise sources of medical information.
- Facilitate learning of patients, house staff/students and other health professionals.
- Contribute to development of new knowledge.

Specific Requirements
- Competence in evaluation of the medical literature.
- The ability to be an effective teacher of radiology to medical students, residents, technologists and clinical colleagues.
- The ability to conduct a radiology research project, which may include quality assurance.
• Appreciation of the important role that basic and clinical research plays in the critical analysis of current scientific developments related to radiology.

vii) Professional

General Requirements
• Deliver highest quality care with integrity, honesty and compassion.
• Exhibit appropriate personal and interpersonal professional behaviours.
• Practice medicine ethically consistent with the obligations of a physician respecting the needs of culture, race and gender.

Specific Requirements
• Be able to accurately assess one’s own performance, strengths and weaknesses.
• Understand the ethical and medical-legal requirements of radiologists.

Training in Canada

The foregoing represents the general and specific objectives that all candidates for the Royal College examinations in Diagnostic Radiology are expected to meet. For those training in Canadian programs, these objectives will be accomplished in a staged manner. Residents in Canadian programs may obtain the document describing this approach from their program directors.
SPECIALTY TRAINING REQUIREMENTS IN DIAGNOSTIC RADIOLOGY

These specialty training requirements apply to those who began training on or after 1 June 1997.

The five years of approved training require, at first, a closely supervised practice, with the opportunity for increasing responsibility in the final years, so that the resident near the end of training can function as a general radiology consultant, requesting help from staff radiologists when necessary. The residency may be followed by one or more years of fellowship training in a subspecialty discipline, as the residence training is not intended to provide a subspecialty level of expertise.

This period must include:

1) One year of basic clinical training:
The purpose of this year is to give the resident a degree of independent responsibility for clinical decisions; an opportunity for further development of the skills required in making effective relationships with patients; the consolidation of competence in primary clinical and technical skills across a broad range of medical practice; and an understanding of the nature of the relationship between a referring physician and a clinical radiological consultant.

2a) Three years of approved resident training in “general diagnostic imaging”, this must include:
Respiratory, cardiovascular, gastro-intestinal and biliary, genitourinary, musculoskeletal, mammography, neurological and pediatric radiology, as well as the following modalities: fluoroscopy, ultrasound, CT and MR imaging.
Because of the varying training programs in the recognized university training centres, these 36 months may be allocated as block periods of at least three months or their equivalents.

2b) One year of approved residency that may consist of one to twelve month periods in any of the following, as long as these are appropriately integrated by the Residency Training Committee:

- further training in diagnostic radiology
- diagnostic ultrasound
- CT
- MR
- nuclear medicine
- cardiac and/or vascular radiology
- interventional radiology
- neuroradiology
- pediatric radiology
- pathology or other clinical specialty relevant to the practice of radiology (for up to three months)
- a full-time research project, relevant to diagnostic imaging, and acceptable to the program director and the Credentials Committee.

NOTE: In view of the amount and variety of radiology to be covered and the skills required at the time of the final examination, it will seldom be appropriate to spend the entire 12 months of the fifth year in any one of these areas.
RESIDENT RESEARCH PROGRAM

While training in clinical radiology remains the main focus of the residency, research is considered to be of paramount importance as well. It is essential that residents gain experience in as many aspects of research as possible, including searching the literature, data analysis and manuscript preparation. A resident cannot know if he/she would enjoy an academic career without firsthand experience. The feeling of satisfaction that accompanies completion of a project, and contribution of information to the medical/scientific literature, can only be appreciated if personally experienced.

The Research Program consists of three aspects; a seminar series, resident support, and a formal presentation day.

Seminar Series

Residents in Medical Imaging are required to have a good foundation of research methodology and critical appraisal in order to either critically evaluate scientific medical literature or pursue independent research activities. Principles and issues of health technology assessment, quality improvement and clinical audits are also core components of the clinical research curriculum. Workshops, tutorials, and lectures on these topics are organized by the department’s staff who are responsible for the design and delivery of the course curriculum. Attendance at these sessions is compulsory and instruction of this curriculum is given throughout the Residency Program.

Support

Department faculty are asked to submit research topics from which residents may choose a project, which he or she finds interesting. The residents are given the opportunity to create their own topic or to choose one from this faculty-generated list. Residents are freed from clinical responsibilities for their work. Each resident presents a short, informal outline of the intended project to the Resident Research Committee in November of their PGY3 year so that project feasibility can be assessed before too much time has been devoted to it. Helpful suggestions are offered by Committee Members. Data collection for the project begins in January of the PGY3 year and extends to December of the same year. During June, the residents present an interim report, again informal, to the Committee, to confirm that data collection has begun and is progressing satisfactorily. In November/December the residents present a third informal discussion for assessment of project status and to determine if an abstract can be generated for submission to a national/international meeting. It is at this time that the Committee determines if the project is satisfactory. Incomplete studies may be considered satisfactory depending on the circumstances described by the resident. Finally, the study is presented formally in the following Spring at the Annual Research Day.
Presentation Day

Our 18th annual Department of Medical Imaging Research Day was held on April 25, 2006. The resident presentations included:

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard Bitar</td>
<td>Distribution of Intraplaque Hemorrhage in Carotid Complicated Plaques Defined by High-Resolution Magnetic Resonance Direct Thrombus Imaging (hiresMRDTI)</td>
</tr>
<tr>
<td>Louis-Martin Boucher</td>
<td>Reviewer discrepancies in analyzing CT Heads and Shunt Series in children in which VP shunt obstruction is suspected</td>
</tr>
<tr>
<td>Philip Buckler</td>
<td>Pulmonary High Resolution CT Findings in Patients with Congenital Bilateral Absence of the Vas Deferens</td>
</tr>
<tr>
<td>Patrick Cervini</td>
<td>Out of Hours CT Pulmonary Angiograms: Accuracy of Resident Reporting</td>
</tr>
<tr>
<td>Errol Colak</td>
<td>The Utility of a First-Generation Computer-aided Detection (CAD) Tool for the Diagnosis of Pulmonary Arterial Filling Defects</td>
</tr>
<tr>
<td>Jeff Mandelcorn</td>
<td>ASPECT Scoring of CT Perfusion in Early Stroke Visualization and Assessment</td>
</tr>
<tr>
<td>Shantel Minnis</td>
<td>The Value of Ultrasound in Assessing the Need for Full vs Focused CT in Children Evaluated for Acute Appendicitis</td>
</tr>
<tr>
<td>Emma Robinson</td>
<td>MRI imaging and clinical response of adenomyosis to uterine artery embolization</td>
</tr>
<tr>
<td>Neil Rosta</td>
<td>Emergency CT Imaging for Acute Abdominal Aortic Disease - Are Utilization Patterns Changing?</td>
</tr>
<tr>
<td>Brian Yeung</td>
<td>Does Radiology Consultation Pre-Imaging Affect the Outcomes of CT Renal Colic Scans?</td>
</tr>
<tr>
<td>Katherine Zukotynski</td>
<td>Contrast Echocardiography Grading Predicts Pulmonary Arteriovenous Malformations at CT</td>
</tr>
<tr>
<td>Katherine Zukotynski</td>
<td>Ultrasonography for Children with Hemophilic Arthropathy: How we do it</td>
</tr>
</tbody>
</table>

While presentation at this meeting is an end unto itself, many of the projects have since been presented at national and international meetings and have been published in peer-reviewed journals. Since the research program was instituted, more than 60 of the residents’ projects have appeared in peer-reviewed journals. Of those not published, many have been presented either orally or as a poster at national/international meetings.
FELLOWSHIP PROGRAM

With access to several thousand inpatient beds, the affiliated hospitals of the University of Toronto form one of the largest teaching facilities in the world, thereby serving as an ideal setting for advanced subspecialty training in Medical Imaging. The program has national and international stature both clinically and in research, and attracts fellows from around the world.

In 2005-2006 the seven divisions of the University of Toronto Department of Medical Imaging offered a comprehensive array of fellowships:

- Abdominal Imaging
- Breast Imaging
- Cardiac Imaging
- Cross-sectional Imaging
- Magnetic Resonance Imaging
- Musculoskeletal Imaging
- Neuroradiology (Diagnostic)
- Neuroradiology (Interventional)
- Pediatric Imaging
- Thoracic Imaging
- Vascular/Interventional Radiology
- Women’s Imaging
- Combined Clinical/Research

The flexibility of the program permits tailoring of the fellowship experience to accommodate most needs. Research is encouraged as an integral component of the fellowship program and to this end protected research time is available to all Medical Imaging fellows.

2005–2006 Department of Medical Imaging Fellows

Abdominal Imaging Fellows
- Humoud Al-Dhuhli
- Richard Bessell-Browne
- Bryan Campbell
- Bina Lanka
- Laxminarayana Lanka
- Charu Mittal
- Marie Staunton
- Aejaz M. Syed
- An Tang

Breast Imaging
- Raafat Abou Saif

Cardiac Imaging Fellow
- Mark Hansen
Cross-sectional Imaging Fellows

- Melanie Ferri
- Priya Healey
- Eugene Ng
- Wynne Sum

Musculoskeletal Imaging Fellows

- Andrew Dunn
- Craig Harris
- Sarah Koles

Neuroradiology (diagnostic) Fellows

- Tabassum Ahmad
- Veera Bharatwal
- Sandeep Bhuta
- Santanu Chakraborty
- Noel Fanning
- Peter Howard
- Keng Yeow Tay
- Ryan Wada

Neuroradiology (interventional) Fellows

- Tali Jonas-Kimchi
- Marlise Santos

Thoracic Imaging Fellows

- Rachel Benamore
- Deirdre Doyle
- Andre Pereira

Vascular/Interventional Radiology Fellows

- Murthy S. Chennapragada
- John Hanson
- Deborah Low
- Ronjon Raha
- Aravindhan Ravindran
- Manish Taneja

Women's Imaging Fellow

- Susan Armstrong
- Mousumi Bhaduri
- Oana Moscovici
- Sean O’Connor
- Susan Peddle
- Michael Stefanos

Pediatric Imaging Fellows

- Hesham Al-Shaalan
- Joao Amaral
• Ulrich Amendy
• Helen Branson
• Gulraiz Chaudry
• Andrew Healey
• Hyun Woo Goo
• Munire Gundogan
• Ganesh Krishnamurthy
• Eoghan Laffan
• Erika Mann
• Daniel Martin
• Anke Raabe
• Ai-Min Sun
• Sameh Tadros
• Cicero Torres
• Xingchang Wei
• Elysa Widjaja
UNDERGRADUATE PROGRAM

Year I Medicine

The first year medical program consists of three main contiguous block courses of study. These include Structure and Function, Metabolism and Nutrition and Brain and Behavior. Medical imaging participates in the Structure and Function and Brain and Behavior courses.

Structure and Function

This course teaches anatomy, histology, and cardio-respiratory physiology.

Anatomy - Radiology Seminar

The anatomy radiology seminar series is being constantly revised and standardized. Sixteen lecturers gave a total of 48 hours of interactive seminars to the first year medical class using this new curriculum. The coordinator for this seminar series and Year 1 radiology teaching was Dr. Josee Sarrazin. These six seminars taught radiographic anatomy of the thorax, abdomen, pelvis-urinary tract, upper extremity, lower extremity and of the head and neck. Faculty lecturers participating in this seminar series included the following radiologists; Dr. Ronit Agid, Dr. Tanya Chawla, Dr. Julien Chen, Dr. TaeBong Chung, Dr. Wayne Deitel, Dr. Tim Dowdell, Dr. Frank Goldberg, Dr. Nasir Jaffer, Dr. Caitlin McGregor, Dr. Matthew Lax, Dr. Seon Kyu Lee, Dr. Dawn Pearce, Dr. Josée Sarazin, Dr. Harry Shulman, Dr. Sean Symons and Dr. Louis Wu.

Full Class Lecture - Medical Imaging Modalities

This one hour lecture was given by Dr. Nasir Jaffer. It outlines basic technical aspects of the major medical imaging modalities including X-ray, CT, MRI, ultrasound and nuclear medicine.

Brain and Behavior

From time to time, the Department of Medical Imaging has provided tutors for the Brain and Behavior course. Dr. Tom Marotta and Dr. Robert Bleakney have served as tutors in this program over the past 2 years. Neuroradiology teaching tools have been developed by members of the department of Medical Imaging and are used in this course on an ongoing basis.

Year II Medicine

Year II teaching centers around the two main programs in the Year II curriculum: The Pathobiology of Disease (the first half of the year), and The Foundations of Medical Practice (the second half of the year).
The Pathobiology of Disease Course

This fourteen-week course teaches pathology, immunology, genetics and other similar subjects. The Department of Medical Imaging has worked on an ongoing basis to develop and provide the medical imaging teaching resources required for delivery of this PBL (Problem based learning), oriented curriculum. The Medical Imaging coordinator for Pathobiology of Disease was Dr. Tanya Chawla.

Pathobiology of Disease - Imaging Case material

In past years, a series of images with annotations was exhibited on a viewer in the Medical Science Building. The content of this series roughly paralleled and/or emphasizes the imaging aspects of the material taught in the Pathobiology of Disease course. Efforts are currently under way, in cooperation with course organizers, to revise and update these cases using current imaging technology. Increasingly, this case material will be presented to students in a web-based format.

Seminar in Chest Imaging

Dr. TaeBong Chung gave a 2-hour lecture on chest imaging to the entire year 2 class, at the beginning of the Pathobiology of Disease Course. This seminar included a review of the radiographic anatomy and radiographic findings associated with the pathology of common diseases of the lung. Numerous radiographs of common lung diseases were presented.

Seminar in the Imaging of Cancer

This lecture emphasized the role medical imaging plays in the staging and follow-up of neoplastic disease. Dr. Tanya Chawla gave this 2-hour lecture to the entire year 2 medicine class.

Foundation of Medical Practice Course

This 21-week course teaches core clinical subjects such as medicine and surgery. Dr. TaeBong Chung was the Medical Imaging Coordinator for the Foundations of Medical Practice Course.

Year II Foundation of Medical Practice Course Seminars

Chest Imaging

The chest imaging seminar, previously given through the academies was revised again last year. The seminar series was prepared and supervised by Dr. TaeBong Chung. This 2-hour seminar was given to smaller seminar groups of students at the academies by the following radiologists. Dr. Louis Wu, Dr. Wayne Deitel, Dr. Nasir Jaffer, Dr. Myles Margolis, Dr. Narinder Paul and Dr. Harry Shulman participated in this seminar series.
Trauma Radiology
The trauma imaging seminars, previously given as full class lectures last year was revised this past year by Dr. R. Bleakney and Dr. Nasir Jaffer. This seminar introduced key elements of trauma imaging. Topics covered included imaging of the cervical spine and brain, chest trauma and imaging of abdominal trauma. This 2-hour seminar was given to smaller seminar groups of students at the academies by the following radiologists Dr. R. Bleakney, Dr. T. Chung, Dr. T. Dowdell, Dr. N. Jaffer and Dr. L. Probyn,

PBL Tutors
Faculty members in the Department of Medical Imaging participated as tutors by leading core multidisciplinary seminars in the Foundations of Medical Practice curriculum.

Dr. Frank Goldberg, Dr. Wayne Deitel, Dr. Danny Marcuzzi and Dr. R. Bleakney provided many hours of teaching time as tutors, plus additional hours of preparation for this course.

Clerkship
The two-year clerkship consists of 78 weeks of clinical rotations. The department of medical imaging provides an array of teaching activity during the clerkship program.

Year III Clerkship

Essentials of Radiology Lecture Seminar Series
Dr. Manohar Shroff and Dr. Nasir Jaffer coordinated this lecture series.

Five half day teaching sessions were presented to the year three class to help prepare them prior to the commencement of their clinical clerkship. This lecture/seminar series previously utilized a, one hour, full class lecture format followed immediately by a two hour, case review, seminar in which the class was divided into four groups. This year a revised 2-hour seminar format replaced the full class lecture.

The curriculum for this series brought together elements from the first and second undergraduate years in medical imaging instruction and emphasised core concepts of medical imaging geared to the needs of clinical clerks.

Seminars for this series were led by the following radiologists.

Interventional Radiology – Dr. E. Hayeems (Coordinator), Dr. R. Beecroft, Dr. R. Chan
Chest Imaging – Dr. T. Chung (Coordinator), Dr. N. Paul, Dr. F. Goldberg, Dr. M. Lax
Abdominal Imaging – Dr. N. Jaffer (Coordinator), Dr. W. Deitel, Dr. J. Sarrazin, Dr. M. Margolis
Neuroradiology – Dr. Manohar Shroff (Coordinator), Dr. S. Laughlin, Dr. E. Yu., Dr. S. Symons
Musculoskeletal Imaging – Dr. Robert Bleakney (Coordinator), Dr. T. Dowdell, Dr. L. Probyn, Dr. J. Rubinstein
Elective Students

A significant number of third year medical students at the University of Toronto took electives in radiology at the various teaching hospitals during the 2004-2005 Academic year.

Hospital Based Seminars

Various Year III seminars have been held in the teaching hospitals as part of the Medicine - Surgery block rotations. These include a series of chest seminars, interventional, gastrointestinal, as well as neuroradiology seminars.

Year IV

Medical Imaging Electives

Electives in Medical Imaging are among the most popular medical under-graduate electives at the University of Toronto. In addition to teaching basic radiology skills these electives also serve to promote awareness about medical imaging within the undergraduate medical community. Elective students are also given an opportunity to consider specialty training in radiology during these teaching blocks.

These electives remain very popular in the undergraduate elective program.

University of Toronto Electives

One hundred sixty four University of Toronto medical students took radiology electives in their third and fourth year at the various teaching hospitals during the 2005-2006 academic year.

Visiting Elective Students

Forty five medical students from outside medical schools, many of whom were overseas foreign students in their senior undergraduate year, took part in visiting electives during the 2005–2006 academic year.

The Bruce Tovee LMCC Review Lectures

The Undergraduate Committee in Radiology has participated in this review course for many years. Three hours of radiology review lectures were given to final year medical students. The majority of these were University of Toronto students. The review course has also been very well received and attended by final year students from McMaster and other local medical schools. The lectures were given in the evening at the main medical lecture theatre of the University. Three, one hour lectures were given. These are listed below.

i) Musculoskeletal Radiology – Dr. Robert Bleakney
ii) Chest Radiology – Dr. TaeBong Chung
The final year students have had access to a series of notes, the MCCQE Study Guide. The medical imaging portion of this lecture series and syllabus were updated and revised by the participating radiologists.

Other Teaching Activities and Involvement

Physiotherapy Student Seminars

A series of seminars are given to the physical therapy students at the University of Toronto by radiologists at the various Academies each year.

Career Sampling Electives in Radiology

On a somewhat informal basis, undergraduate students, many in Year I have spent various periods of time, from several days to weeks, in all of the teaching hospital radiology departments as part of a career sampling experience.

Undergraduate Teaching Computer File for Radiology

A comprehensive interactive computerized teaching program, called **Radiofile** has been developed by the Department of Medical Imaging. This program allows undergraduate students to have a uniform exposure to core medical imaging teaching material. The students can access this program either in the various radiology departments, or in the Academy computer laboratories. The program is available centrally, in the computer laboratory in the Medical Sciences Building.

The Internet and Undergraduate Education in Radiology

Under the direction of Dr. Nasir Jaffer, the Department of Medical Imaging hosts an internet web site on which various program descriptions are posted. This web site is also playing an expanding role in the Internet delivery of imaging seminars and programs as well as in the evaluation of undergraduate Medical Imaging teaching programs.

The Future Direction of the Medical Imaging Undergraduate Teaching Program

Medical Imaging is playing an expanding role in modern medical practice and as a result, there is an increasing demand for undergraduate teaching in this field. In response to this need, efforts have been under way to standardize the major components of the undergraduate medical imaging teaching program through the development and implementation of standardized curriculum and electronic teaching tools. This ongoing effort has and will continue to further optimize the efficiency, scope and value of the undergraduate teaching program in Medical Imaging at the University of Toronto.
CONTINUING EDUCATION PROGRAM

Organ Imaging Review
September 11 - 14, 2005

Course Description

This four day course focuses on aspects of primary interest to both radiologists and radiologists-in-training. The course content includes general concepts of diagnostic imaging with emphasis on recent advances. The participant learns new ideas and has the opportunity to enhance their knowledge in selected common clinical situations. The participant is also able to participate in problem-solving with daily case reviews in each of the organ systems.

Course Chairman: Walter Kucharczyk, M.D.
Course Director: Paul Hamilton, M.D.

University of Toronto Faculty

Atri, Mostafa, M.D., Associate Professor
Aviv, Richard, M.D., Assistant Professor
Betel, Carrie, M.D., Lecturer
Burns, Peter, M.D., Professor
Chawla, Tanya, M.D., Assistant Professor
Chung, Tae-Bong, M.D., Assistant Professor
Crystal, Pavel, M.D., Assistant Professor
Curpen, Belinda, M.D., Assistant Professor
Fong, Katherine, M.D., Associate Professor
Haider, Masoom, M.D., Assistant Professor
Hamilton, Paul, M.D., Assistant Professor
Hanbidge, Anthony, M.D., Assistant Professor
Ibach, Deborah, M.D., Associate Staff
Jhaveri, Kartik, M.D., Assistant Professor
Jong, Roberta, M.D., Associate Professor
Keller, Anne, M.D., Assistant Professor
Khalili, Korosh, M.D., Assistant Professor
Kim, Tae Kyoung, M.D., Associate Professor
Kulkarni, Supriya, M.D., Assistant Professor
Laughlin, Suzanne, M.D., Assistant Professor
Lazinski, Dorothy, M.D., Lecturer
Margolis, Myles, M.D., Assistant Professor
Marotta, Tom, M.D., Assistant Professor
McGregor, Caitlin, M.D., Lecturer
Mikulis, David, M.D., Associate Professor
Muradali, Derek, M.D., Assistant Professor
O’Malley, Martin, M.D., Assistant Professor
Paul, Narinder, M.D., Assistant Professor
Probyn, Linda, M.D., Lecturer
Roberts, Heidi, M.D., Associate Professor
Salem, Shia, M.D., Associate Professor
Sarrazin, Josee, M.D., Assistant Professor
Shumak, Rene, M.D., Assistant Professor
Toi, Ants, M.D., Associate Professor
Weisbrod, Gordon, M.D., Professor
Willinsky, Robert, M.D., Professor
Yu, Eugene, M.D., Lecturer
Wu, Louis, M.D., Assistant Professor

Guest Faculty

Silverman, Stuart, M.D.
Professor
Department of Radiology
Harvard Medical School
Brigham and Women’s Hospital
Boston, Massachusetts

Wilson, Christine, M.D.
Professor
Department of Medical Imaging
University of British Columbia
Vancouver, British Columbia
INVITED LECTURERS AND VISITING PROFESSORS

September 26-27, 2005 Dr. Marc Levine
Department of Radiology
Hospital of the University of Pennsylvania

“Radiology of the Esophagus: A Pattern Approach”
“Radiology of the Small Bowel: A Pattern Approach”
“Peptic Ulcer Disease, Helicobacter Pylori, and Beyond”

October 31-November 1, 2005 Dr. Peter Munk
Department of Radiology
University of British Columbia

“Arthroplasty Failure”
“Vertebroplasty”
“Biopsy”

January 9-10, 2006 Dr. David Lynch
Department of Radiology
University of Colorado Health Sciences Center

“Pulmonary Manifestations of Collagen Vascular Disease”
“Imaging of Occupational and Environmental Lung Disease”
“Imaging of Idiopathic Interstitial Pneumonias”

February 7-8, 2006 Dr. Nolan Altman
Department of Radiology
Miami Children’s Hospital

“Neuroimaging of Metabolic Mitochondrial Disease of Children”
“fMR and DTI Imaging and Applications in Children”
March 6-7, 2006 Dr. Robyn Birdwell
Department of Radiology
Brigham and Women’s Hospital

“Computer-assisted Detection”

“Breast MRI – Clinical Uses”

“Missed Cancers”

April 3-4, 2006 Dr. Laurie Loevner
Department of Radiology
University of Pennsylvania Hospital

“Skull Base: Normal Anatomy and Nasopharyngeal Cancer”

“PET in the Head and Neck: Normal Variations, Pitfalls, and Head and Neck Cancer”

“Larynx: Normal Anatomy and Imaging Laryngeal Cancer”

May 1-2, 2006 Dr. Rethy Chhem
Department of Radiology
London Health Sciences Centre – University Hospital

“Imaging in Osteoarchaeology”

“US in Arthritis”

“US of MSK Infection”